scholarly journals Local rigidity of affine actions of higher rank groups and lattices

2009 ◽  
Vol 170 (1) ◽  
pp. 67-122 ◽  
Author(s):  
David Fisher ◽  
Gregory Margulis
1998 ◽  
Vol 18 (3) ◽  
pp. 687-702 ◽  
Author(s):  
NANTIAN QIAN ◽  
CHENGBO YUE

Let $\rho_0$ be the standard action of a higher-rank lattice $\Gamma$ on a torus by automorphisms induced by a homomorphism $\pi_0:\Gamma\to SL(n,{\Bbb Z})$. Assume that there exists an abelian group ${\cal A}\subset \Gamma$ such that $\pi_0({\cal A})$ satisfies the following conditions: (1) ${\cal A}$ is ${\Bbb R}$-diagonalizable; (2) there exists an element $a\in {\cal A}$, such that none of its eigenvalues $\lambda_1,\dots,\lambda_n$ has unit absolute value, and for all $i,j,k=1,\dots,n$, $|\lambda_i\lambda_j|\neq|\lambda_k|$; (3) for each Lyapunov functional $\chi_i$, there exist finitely many elements $a_j\in {\cal A}$ such that $E_{\chi_i}=\cap_{j} E^u(a_j)$ (see \S1 for definitions). Then $\rho_0$ is locally rigid. This local rigidity result differs from earlier ones in that it does not require a certain one-dimensionality condition.


1993 ◽  
Vol 3 (4) ◽  
pp. 370-394 ◽  
Author(s):  
R. Feres
Keyword(s):  

2017 ◽  
Vol 39 (06) ◽  
pp. 1668-1709
Author(s):  
ZHENQI JENNY WANG

In this paper, we show local smooth rigidity for higher rank ergodic nilpotent action by toral automorphisms. In former papers all examples for actions enjoying the local smooth rigidity phenomenon are higher rank and have no rank-one factors. In this paper we give examples of smooth rigidity of actions having rank-one factors. The method is a generalization of the KAM (Kolmogorov–Arnold–Moser) iterative scheme.


2001 ◽  
Vol 21 (1) ◽  
pp. 121-164 ◽  
Author(s):  
GREGORY A. MARGULIS ◽  
NANTIAN QIAN

Under some weak hyperbolicity conditions, we establish C^0- and C^\infty-local rigidity theorems for two classes of standard algebraic actions: (1) left translation actions of higher real rank semisimple Lie groups and their lattices on quotients of Lie groups by uniform lattices; (2) higher rank lattice actions on nilmanifolds by affine diffeomorphisms. The proof relies on an observation that local rigidity of the standard actions is a consequence of the local rigidity of some constant cocycles. The C^0-local rigidity for weakly hyperbolic standard actions follows from a cocycle C^0-local rigidity result proved in the paper. The main ingredients in the proof of the latter are Zimmer's cocycle superrigidity theorem and stability properties of partially hyperbolic vector bundle maps. The C^\infty-local rigidity is deduced from the C^0-local rigidity following a procedure outlined by Katok and Spatzier.Using similar considerations, we also establish C^0-global rigidity of volume preserving, higher rank lattice Anosov actions on nilmanifolds with a finite orbit.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charlotte Canteloup ◽  
Mabia B. Cera ◽  
Brendan J. Barrett ◽  
Erica van de Waal

AbstractSocial learning—learning from others—is the basis for behavioural traditions. Different social learning strategies (SLS), where individuals biasedly learn behaviours based on their content or who demonstrates them, may increase an individual’s fitness and generate behavioural traditions. While SLS have been mostly studied in isolation, their interaction and the interplay between individual and social learning is less understood. We performed a field-based open diffusion experiment in a wild primate. We provided two groups of vervet monkeys with a novel food, unshelled peanuts, and documented how three different peanut opening techniques spread within the groups. We analysed data using hierarchical Bayesian dynamic learning models that explore the integration of multiple SLS with individual learning. We (1) report evidence of social learning compared to strictly individual learning, (2) show that vervets preferentially socially learn the technique that yields the highest observed payoff and (3) also bias attention toward individuals of higher rank. This shows that behavioural preferences can arise when individuals integrate social information about the efficiency of a behaviour alongside cues related to the rank of a demonstrator. When these preferences converge to the same behaviour in a group, they may result in stable behavioural traditions.


Sign in / Sign up

Export Citation Format

Share Document