Abstract. Nagra and its international partners have been conducting underground
research projects at the Grimsel Test Site (GTS,
https://www.grimsel.com, last access: 8 November 2021) for more than 35 years. The results have been incorporated directly into modelling, safety and engineering feasibility studies necessary for the siting and construction of deep geological repositories. Various types of experiments are carried out at the GTS, each involving field testing, laboratory studies, design and modelling tasks, thus integrating all scientific aspects. Projects are typically planned over a 5 year period with the option to extend depending on the latest findings from the experiment. In the current 5 year programme (2019–2023) new phases of running in situ experiments using radionuclides were started and include the Long-Term Diffusion experiment (LTD) and the Colloid Formation and Migration project (CFM). A completely new experiment studying the migration of C-14 and I-129 in aged cement (CIM) was also initiated. Other experiments focusing mostly on engineered barrier materials were continued such as the Material Corrosion Test (MaCoTe), which is studying anaerobic corrosion of candidate canister materials in bentonite (Fig. 1). Also, a 1:1 scale experiment studying the high-temperature (>175∘C) effects on bentonite materials (HotBENT project) was started last year. In this paper we provide an overview of the CIM, LTD and MaCoTe projects, including key findings so far. In addition to research, the GTS, as part of the Grimsel Training Centre (GTC), is also used as an education platform for knowledge transfer to the next generation of scientists and engineers in the area of radioactive waste disposal and geosciences.