scholarly journals Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis

2017 ◽  
Vol 27 (2) ◽  
pp. 321-334 ◽  
Author(s):  
Irena Maus ◽  
Yong Sung Kim ◽  
Daniel Wibberg ◽  
Yvonne Stolze ◽  
Sandra Off ◽  
...  
2019 ◽  
Vol 47 (18) ◽  
pp. e103-e103 ◽  
Author(s):  
Benjamin J Callahan ◽  
Joan Wong ◽  
Cheryl Heiner ◽  
Steve Oh ◽  
Casey M Theriot ◽  
...  

AbstractTargeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate. In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members without residual errors. The measured abundances of intra-genomic sequence variants were in the integral ratios expected from the genuine allelic variants within a genome. The full-length 16S gene sequences recovered by our approach allowed Escherichia coli strains to be correctly classified to the O157:H7 and K12 sub-species clades. In human fecal samples, our method showed strong technical replication and was able to recover the full complement of 16S rRNA alleles in several E. coli strains. There are likely many applications beyond microbial profiling for which high-throughput amplicon sequencing of complete genes with single-nucleotide resolution will be of use.


2016 ◽  
pp. gkw984 ◽  
Author(s):  
Dieter M. Tourlousse ◽  
Satowa Yoshiike ◽  
Akiko Ohashi ◽  
Satoko Matsukura ◽  
Naohiro Noda ◽  
...  

2019 ◽  
Author(s):  
Jean-Claude OGIER ◽  
Sylvie Pagès ◽  
Maxime Galan ◽  
Matthieu Barret ◽  
Sophie Gaudriault

Abstract Background Microbiome composition is frequently studied by the amplification and high-throughput sequencing of specific molecular markers (metabarcoding). Various hypervariable regions of the 16S rRNA gene are classically used to estimate bacterial diversity, but other universal bacterial markers with a finer taxonomic resolution could be employed. We compared specificity and sensitivity between a portion of the rpoB gene and the V3V4 hypervariable region of the 16S rRNA gene. Results We first designed universal primers for rpoB suitable for use with Illumina sequencing-based technology and constructed a reference rpoB database of 45,000 sequences. The rpoB and V3V4 markers were amplified and sequenced from (i) a mock community of 19 bacterial strains from both Gram-negative and Gram-positive lineages; (ii) bacterial assemblages associated with entomopathogenic nematodes. In metabarcoding analyses of mock communities with two analytical pipelines (FROGS and DADA2), the estimated diversity captured with the rpoB marker resembled the expected composition of these mock communities more closely than that captured with V3V4. The rpoB marker had a higher level of taxonomic affiliation, a higher sensitivity (detection of all the species present in the mock communities), and a higher specificity (low rates of spurious OTU detection) than V3V4. We applied both primers to infective juveniles of the nematode Steinernema glaseri. Both markers showed the bacterial community associated with this nematode to be of low diversity (< 50 OTUs), but only rpoB reliably detected the symbiotic bacterium Xenorhabdus poinarii. Conclusions Our results confirm that different microbiota composition data may be obtained with different markers. We found that rpoB was a highly appropriate marker for assessing the taxonomic structure of mock communities and the nematode microbiota. Further studies on other ecosystems should be considered to evaluate the universal usefulness of the rpoB marker. Our data highlight two crucial elements that should be taken into account to ensure more reliable and accurate descriptions of microbial diversity in high-throughput amplicon sequencing analyses: i) the need to include mock communities as controls; ii) the advantages of using a multigenic approach including at least one housekeeping gene (rpoB is a good candidate) and one variable region of the 16S rRNA gene.


2019 ◽  
Author(s):  
Jean-Claude OGIER ◽  
Sylvie Pagès ◽  
Maxime Galan ◽  
Matthieu Barret ◽  
Sophie Gaudriault

Abstract Background Microbiome composition is frequently studied by the amplification and high-throughput sequencing of specific molecular markers (metabarcoding). Various hypervariable regions of the 16S rRNA gene are classically used to estimate bacterial diversity, but other universal bacterial markers with a finer taxonomic resolution could be employed. We compared specificity and sensitivity between a portion of the rpoB gene and the V3V4 hypervariable region of the 16S rRNA gene. Results We first designed universal primers for rpoB suitable for use with Illumina sequencing-based technology and constructed a reference rpoB database of 45,000 sequences. The rpoB and V3V4 markers were amplified and sequenced from (i) a mock community of 19 bacterial strains from both Gram-negative and Gram-positive lineages; (ii) bacterial assemblages associated with entomopathogenic nematodes. In metabarcoding analyses of mock communities with two analytical pipelines (FROGS and DADA2), the estimated diversity captured with the rpoB marker resembled the expected composition of these mock communities more closely than that captured with V3V4. The rpoB marker had a higher level of taxonomic affiliation, a higher sensitivity (detection of all the species present in the mock communities), and a higher specificity (low rates of spurious OTU detection) than V3V4. We applied both primers to infective juveniles of the nematode Steinernema glaseri. Both markers showed the bacterial community associated with this nematode to be of low diversity (< 50 OTUs), but only rpoB reliably detected the symbiotic bacterium Xenorhabdus poinarii. Conclusions Our results confirm that different microbiota composition data may be obtained with different markers. We found that rpoB was a highly appropriate marker for assessing the taxonomic structure of mock communities and the nematode microbiota. Further studies on other ecosystems should be considered to evaluate the universal usefulness of the rpoB marker. Our data highlight two crucial elements that should be taken into account to ensure more reliable and accurate descriptions of microbial diversity in high-throughput amplicon sequencing analyses: i) the need to include mock communities as controls; ii) the advantages of using a multigenic approach including at least one housekeeping gene (rpoB is a good candidate) and one variable region of the 16S rRNA gene.


2018 ◽  
Author(s):  
Benjamin J Callahan ◽  
Joan Wong ◽  
Cheryl Heiner ◽  
Steve Oh ◽  
Casey M Theriot ◽  
...  

AbstractTargeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate.In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members without residual errors. The measured abundances of intra-genomic sequence variants were in the integral ratios expected from the genuine allelic variants within a genome. The full-length 16S gene sequences recovered by our approach allowedE. colistrains to be correctly classified to the O157:H7 and K12 sub-species clades. In human fecal samples, our method showed strong technical replication and was able to recover the full complement of 16S rRNA alleles in severalE. colistrains.There are likely many applications beyond microbial profiling for which high-throughput amplicon sequencing of complete genes with single-nucleotide resolution will be of use.


2019 ◽  
Author(s):  
Jean-Claude Ogier ◽  
Sylvie Pagès ◽  
Maxime Galan ◽  
Mathieu Barret ◽  
Sophie Gaudriault

AbstractBackgroundMicrobiome composition is frequently studied by the amplification and high-throughput sequencing of specific molecular markers (metabarcoding). Various hypervariable regions of the 16S rRNA gene are classically used to estimate bacterial diversity, but other universal bacterial markers with a finer taxonomic resolution could be employed. We compared specificity and sensitivity between a portion of the rpoB gene and the V3V4 hypervariable region of the 16S rRNA gene.ResultsWe first designed universal primers for rpoB suitable for use with Illumina sequencing-based technology and constructed a reference rpoB database of 45,000 sequences. The rpoB and V3V4 markers were amplified and sequenced from (i) a mock community of 19 bacterial strains from both Gram-negative and Gram-positive lineages; (ii) bacterial assemblages associated with entomopathogenic nematodes. In metabarcoding analyses of mock communities with two analytical pipelines (FROGS and DADA2), the estimated diversity captured with the rpoB marker resembled the expected composition of these mock communities more closely than that captured with V3V4. The rpoB marker had a higher level of taxonomic affiliation, a higher sensitivity (detection of all the species present in the mock communities), and a higher specificity (low rates of spurious OTU detection) than V3V4. We applied both primers to infective juveniles of the nematode Steinernema glaseri. Both markers showed the bacterial community associated with this nematode to be of low diversity (< 50 OTUs), but only rpoB reliably detected the symbiotic bacterium Xenorhabdus poinarii.ConclusionsOur results confirm that different microbiota composition data may be obtained with different markers. We found that rpoB was a highly appropriate marker for assessing the taxonomic structure of mock communities and the nematode microbiota. Further studies on other ecosystems should be considered to evaluate the universal usefulness of the rpoB marker. Our data highlight two crucial elements that should be taken into account to ensure more reliable and accurate descriptions of microbial diversity in high-throughput amplicon sequencing analyses: i) the need to include mock communities as controls; ii) the advantages of using a multigenic approach including at least one housekeeping gene (rpoB is a good candidate) and one variable region of the 16S rRNA gene.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Morten Simonsen Dueholm ◽  
Kasper Skytte Andersen ◽  
Simon Jon McIlroy ◽  
Jannie Munk Kristensen ◽  
Erika Yashiro ◽  
...  

ABSTRACT High-throughput 16S rRNA gene amplicon sequencing is an essential method for studying the diversity and dynamics of microbial communities. However, this method is presently hampered by the lack of high-identity reference sequences for many environmental microbes in the public 16S rRNA gene reference databases and by the absence of a systematic and comprehensive taxonomy for the uncultured majority. Here, we demonstrate how high-throughput synthetic long-read sequencing can be applied to create ecosystem-specific full-length 16S rRNA gene amplicon sequence variant (FL-ASV) resolved reference databases that include high-identity references (>98.7% identity) for nearly all abundant bacteria (>0.01% relative abundance) using Danish wastewater treatment systems and anaerobic digesters as an example. In addition, we introduce a novel sequence identity-based approach for automated taxonomy assignment (AutoTax) that provides a complete seven-rank taxonomy for all reference sequences, using the SILVA taxonomy as a backbone, with stable placeholder names for unclassified taxa. The FL-ASVs are perfectly suited for the evaluation of taxonomic resolution and bias associated with primers commonly used for amplicon sequencing, allowing researchers to choose those that are ideal for their ecosystem. Reference databases processed with AutoTax greatly improves the classification of short-read 16S rRNA ASVs at the genus- and species-level, compared with the commonly used universal reference databases. Importantly, the placeholder names provide a way to explore the unclassified environmental taxa at different taxonomic ranks, which in combination with in situ analyses can be used to uncover their ecological roles.


2019 ◽  
Author(s):  
Morten Simonsen Dueholm ◽  
Kasper Skytte Andersen ◽  
Simon Jon McIlroy ◽  
Jannie Munk Kristensen ◽  
Erika Yashiro ◽  
...  

AbstractHigh-throughput 16S rRNA gene amplicon sequencing is an essential method for studying the diversity and dynamics of microbial communities. However, this method is presently hampered by the lack of high-identity reference sequences for many environmental microbes in the public 16S rRNA gene reference databases, and by the absence of a systematic and comprehensive taxonomy for the uncultured majority. Here we demonstrate how high-throughput synthetic long-read sequencing can be applied to create ecosystem-specific full-length 16S rRNA gene amplicon sequence variant (FL-ASV) reference databases that include high-identity references (>98.7% identity) for nearly all abundant bacteria (>0.01% relative abundance) using Danish wastewater treatment systems and anaerobic digesters as an example. In addition, we introduce a novel sequence identity-based approach for automated taxonomy assignment (AutoTax) that provides a complete seven-rank taxonomy for all reference sequences, using the SILVA taxonomy as a backbone, with stable placeholder names for unclassified taxa. The FL-ASVs are perfectly suited for the evaluation of taxonomic resolution and bias associated with primers commonly used for amplicon sequencing, allowing researchers to choose those that are ideal for their ecosystem. The AutoTax taxonomy greatly improves the classification of short-read 16S rRNA gene amplicon sequence variants (ASVs) at the genus- and species-level, compared to the commonly used universal reference databases. Importantly, the placeholder names provide a way to explore the unclassified environmental taxa at different taxonomic ranks, which in combination with in situ analyses can be used to uncover their ecological roles.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Janis R. Bedarf ◽  
Naiara Beraza ◽  
Hassan Khazneh ◽  
Ezgi Özkurt ◽  
David Baker ◽  
...  

Abstract Background Recent studies suggested the existence of (poly-)microbial infections in human brains. These have been described either as putative pathogens linked to the neuro-inflammatory changes seen in Parkinson’s disease (PD) and Alzheimer’s disease (AD) or as a “brain microbiome” in the context of healthy patients’ brain samples. Methods Using 16S rRNA gene sequencing, we tested the hypothesis that there is a bacterial brain microbiome. We evaluated brain samples from healthy human subjects and individuals suffering from PD (olfactory bulb and pre-frontal cortex), as well as murine brains. In line with state-of-the-art recommendations, we included several negative and positive controls in our analysis and estimated total bacterial biomass by 16S rRNA gene qPCR. Results Amplicon sequencing did detect bacterial signals in both human and murine samples, but estimated bacterial biomass was extremely low in all samples. Stringent reanalyses implied bacterial signals being explained by a combination of exogenous DNA contamination (54.8%) and false positive amplification of host DNA (34.2%, off-target amplicons). Several seemingly brain-enriched microbes in our dataset turned out to be false-positive signals upon closer examination. We identified off-target amplification as a major confounding factor in low-bacterial/high-host-DNA scenarios. These amplified human or mouse DNA sequences were clustered and falsely assigned to bacterial taxa in the majority of tested amplicon sequencing pipelines. Off-target amplicons seemed to be related to the tissue’s sterility and could also be found in independent brain 16S rRNA gene sequences. Conclusions Taxonomic signals obtained from (extremely) low biomass samples by 16S rRNA gene sequencing must be scrutinized closely to exclude the possibility of off-target amplifications, amplicons that can only appear enriched in biological samples, but are sometimes assigned to bacterial taxa. Sequences must be explicitly matched against any possible background genomes present in large quantities (i.e., the host genome). Using close scrutiny in our approach, we find no evidence supporting the hypothetical presence of either a brain microbiome or a bacterial infection in PD brains.


Sign in / Sign up

Export Citation Format

Share Document