scholarly journals Direct and indirect reduction of Cr(VI) by fermentative Fe(III)-reducing Cellulomonas sp. strain Cellu-2a

Author(s):  
Anamika Khanal ◽  
Hor-Gil Hur ◽  
James K. Fredrickson ◽  
Ji-Hoon Lee
Keyword(s):  
2019 ◽  
Vol 946 ◽  
pp. 523-527
Author(s):  
Arman S. Bilgenov ◽  
P.A. Gamov ◽  
V.E. Roshchin

The direct reduction of metals from a complex oxide with low iron content by solid carbon and indirect reduction by CO gas were studied in a vertical laboratory resistance furnace at 1300 °C for an hour reduction time. The experimental results were described from the point of view of the electrochemical nature of the metal reduction process, that involves the interaction of ions and electrons in the oxide lattice. The technique was developed by using the two different software programs for the quantitative estimation of the areas, average size and number of the metal forming in a complex oxide with extensive fields of vision. The obtained results of the quantitative characteristics of the metal forming during solid-phase carbo-thermal reduction were presented. The processes of reduction by solid carbon and CO gas based on the areas occupied by metal particles were quantitatively compared. The experimental results and the prospects for further experimental work were assessed and outlined.


2013 ◽  
Vol 6 (2) ◽  
pp. 127-131 ◽  
Author(s):  
Vidya Rattan ◽  
Sachin Rai ◽  
Amit Sethi

Long-standing temporomandibular joint (TMJ) dislocation is an uncommon condition, and due to its rarity, no definitive guidelines have been developed for its management. Various reduction techniques ranging from indirect traction techniques to direct exposure of the TMJ have been used. Indirect traction techniques for reduction may fail in long-standing dislocation. Management of two cases of long-standing TMJ dislocation with midline mandibulotomy is discussed in which other indirect reduction techniques had failed. Midline osteotomy of the mandible can be used for reduction in difficult TMJ dislocations. An algorithm for the management of long-standing TMJ dislocation is proposed and related literature is reviewed.


2020 ◽  
Vol 2,2020 (2,2020 (125)) ◽  
pp. 5-9
Author(s):  
Vaniukov A ◽  
Kovalyov D ◽  
Vaniukova N ◽  
Khodyko I ◽  
Bezshkurenko O

The objective of the present work is to research a quantitate ratio of degree direct reduction inside of SRP and degree of indirect reduction outside of SRP on the top of the blast furnace.The reactions of direct and indirect reduction occurring during the heat treatment of self reducing pellets (SRP) have been studied. In this investigation Blast furnace (BF) sludge which contains particles of coke, has been included in the SRP blend as a source of solid reductant and iron bearing oxides. In the SRP as a part ot the blast furnace burden occur the reactions simultaneously: inside of SRP-direct reduction by Csolid; gasification of carbon and indirect reduction by CO; and outside of SRP-indirect reduction of iron bearing oxides by reducing gas coming from the hearth of blast furnace through the column of charged materials. The experimental setup is shown in Fig. 1. It con-sists of a electrical heating furnace, which can be moved up and down. The quartz tube passes through the furnace. The reaction zone is in the middle of the furnace. Neutral argon atmosphere is created and for indirect reduction argon changed - on hydrogen. Gases of argon, hydrogen are introduced into the furnace separately. Wire of nickel alloy chromosome joins the scales test. A thermocouple is located in the tube.The crucible of wire chrome-nickel was permeable.Metohd. The experiments was performed continuously from the start temperature (~200 ˚C) to the experimental temperature (500 ˚C; 700 ˚C; 900 ˚C; 1100 ˚C) in argon free environment. Upon reaching the desired temperature argon was replaced by hydrogen during 30 minutes. After that the reduced probe of SRP was cooled in argon. Results. The integrated degree of reduction is equal 100%, which includes 98,6 % direct reduction by solid carbon under temperatures 1100°C. The chemical analysis of the reduced SRP showed the degree of integrated reduction change from 85,79 % (900 °C) to 92,50 % (1000 °C) and 84,6% (1100°C) and metallization 83,30 % (900 °C), 89,90 % (1000 °C), 80,75 % (1100 °C).These data correspond to results of degree of reduction SRP depends on temperature


Orthopedics ◽  
2011 ◽  
Vol 34 (12) ◽  
pp. 970-974
Author(s):  
Josef K. Eichinger ◽  
Daphne Beingessner
Keyword(s):  

Orthopedics ◽  
2012 ◽  
Vol 35 (9) ◽  
pp. 768-772 ◽  
Author(s):  
Jens Hahnhaussen ◽  
David J. Hak ◽  
Sebastian Weckbach ◽  
Jake P. Heiney ◽  
Philip F. Stahel

Sign in / Sign up

Export Citation Format

Share Document