Design of Robust Approach for Failure Detection in Dynamic Control Systems

Author(s):  
Gomaa Zaki El-Far

This paper presents a robust instrument fault detection (IFD) scheme based on modified immune mechanism based evolutionary algorithm (MIMEA) that determines on line the optimal control actions, detects faults quickly in the control process, and reconfigures the controller structure. To ensure the capability of the proposed MIMEA, repeating cycles of crossover, mutation, and clonally selection are included through the sampling time. This increases the ability of the proposed algorithm to reach the global optimum performance and optimize the controller parameters through a few generations. A fault diagnosis logic system is created based on the proposed algorithm, nonlinear decision functions, and its derivatives with respect to time. Threshold limits are implied to improve the system dynamics and sensitivity of the IFD scheme to the faults. The proposed algorithm is able to reconfigure the control law safely in all the situations. The presented false alarm rates are also clearly indicated. To illustrate the performance of the proposed MIMEA, it is applied successfully to tune and optimize the controller parameters of the nonlinear nuclear power reactor such that a robust behavior is obtained. Simulation results show the effectiveness of the proposed IFD scheme based MIMEA in detecting and isolating the dynamic system faults.

2011 ◽  
Vol 2 (1) ◽  
pp. 24-43
Author(s):  
Gomaa Zaki El-Far

This paper presents a robust instrument fault detection (IFD) scheme based on modified immune mechanism based evolutionary algorithm (MIMEA) that determines on line the optimal control actions, detects faults quickly in the control process, and reconfigures the controller structure. To ensure the capability of the proposed MIMEA, repeating cycles of crossover, mutation, and clonally selection are included through the sampling time. This increases the ability of the proposed algorithm to reach the global optimum performance and optimize the controller parameters through a few generations. A fault diagnosis logic system is created based on the proposed algorithm, nonlinear decision functions, and its derivatives with respect to time. Threshold limits are implied to improve the system dynamics and sensitivity of the IFD scheme to the faults. The proposed algorithm is able to reconfigure the control law safely in all the situations. The presented false alarm rates are also clearly indicated. To illustrate the performance of the proposed MIMEA, it is applied successfully to tune and optimize the controller parameters of the nonlinear nuclear power reactor such that a robust behavior is obtained. Simulation results show the effectiveness of the proposed IFD scheme based MIMEA in detecting and isolating the dynamic system faults.


Author(s):  
B. R. Upadhyaya ◽  
S. R. P. Perillo ◽  
X. Xu ◽  
F. Li

The efficient and safe performance of nuclear power plants of the future requires remote monitoring, control, and condition-based maintenance in order to maximize their capacity factor. Small and medium reactors, in the 50–500 MWe power range, may become commonplace for certain applications, with a design features for remote deployment. Such a reactor may be part of a smaller electrical grid, and deployed in areas with limited infrastructure. Typical applications include power generation, process heat for water desalination, and co-generation. There are other considerations in the deployment of these reactors: development of effective I&C to support nuclear fuel security monitoring, longer than normal fuel cycle length, and increased autonomy in plant operation and maintenance. A Model Predictive Controller (MPC) for the IRIS (International Reactor Innovative and Secure) system has been developed as a multivariate control strategy for reactor power regulation and the control of the helical coil steam generator (HCSG) used in IRIS. A MATLAB-SIMULINK model of the integral reactor was developed and used to demonstrate the design of the MPC. The two major control actions are the control rod reactivity perturbation and the steam control valve setting. The latter is used to regulate the set point value of the superheated steam. The MPC technique minimizes the necessity of on-line controller tuning, and is highly effective for remote and autonomous control actions. As an important part of the instrumentation & control (I&C) strategy, sensor placement in next generation reactors needs to be addressed for both control design and fault diagnosis. This approach is being applied to the IRIS system to enhance the efficiency of reactor monitoring that would assist in a quick and accurate identification of faults. This is achieved by solving the problem from the fault diagnosis perspective, rather than treating the sensor placement as a pure optimization problem. The solution to the problem of sensor placement may be broadly divided into two tasks: (1) fault modeling or prediction of cause-effect behavior of the system, generating a set of variables that are affected whenever a fault occurs, and (2) use of the generated sets to identify sensor locations based on various design criteria, such as observability, resolution, reliability, etc. The proposed algorithm is applied to the design of a sensor network for the IRIS system using multiple design criteria. This enables the designer to obtain a good preliminary design without extensive quantitative information about the process. The control technique will be demonstrated by application to a real process with actuators and associated device time delays. A multivariate flow control loop has been developed with the objective of demonstrating digital control implementation using proportional-integral controllers for water level regulation in coupled tanks. The controller implementation includes self-tuning, control mode selection under device or instrument fault, automated learning, on-line fault monitoring and failure anticipation, and supervisory control. The paper describes the integration of control strategies, fault-tolerant control, and sensor placement for the IRIS system, and demonstration of the technology using an experimental control loop.


Author(s):  
R. Skoda ◽  
J. Rataj ◽  
J. Uher

The Pebble Bed Modular Reactor (PBMR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor which utilise fuel in form of spheres that are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burn-up limit. When the reactor is started up for the first time, the lower-enriched start-up fuel is used, mixed with graphite spheres, to bring the core to criticality. As the core criticality is established and the start-up fuel is burned-in, the graphite spheres are progressively removed and replaced with more start-up fuel. Once it becomes necessary for maintaining power output, the higher enriched equilibrium fuel is introduced to the reactor and the start-up fuel is removed. During the initial run of the reactor it is important to discriminate between the irradiated startup fuel and the irradiated equilibrium fuel to ensure that only the equilibrium fuel is returned to the reactor. There is therefore a need for an on-line enrichment discrimination device that can discriminate between irradiated start-up fuel spheres and irradiated equilibrium fuel spheres. The device must also not be confused by the presence of any remaining graphite spheres. Due to it’s on-line nature the device must accomplish the discrimination within tight time limits. Theoretical calculations and experiments show that Fuel Enrichment Discrimination based on delayed neutrons detection is possible. The paper presents calculations and experiments showing viability of the method.


Sign in / Sign up

Export Citation Format

Share Document