Advanced Control Design, Optimal Sensor Placement, and Technology Demonstration for Small and Medium Nuclear Power Reactors

Author(s):  
B. R. Upadhyaya ◽  
S. R. P. Perillo ◽  
X. Xu ◽  
F. Li

The efficient and safe performance of nuclear power plants of the future requires remote monitoring, control, and condition-based maintenance in order to maximize their capacity factor. Small and medium reactors, in the 50–500 MWe power range, may become commonplace for certain applications, with a design features for remote deployment. Such a reactor may be part of a smaller electrical grid, and deployed in areas with limited infrastructure. Typical applications include power generation, process heat for water desalination, and co-generation. There are other considerations in the deployment of these reactors: development of effective I&C to support nuclear fuel security monitoring, longer than normal fuel cycle length, and increased autonomy in plant operation and maintenance. A Model Predictive Controller (MPC) for the IRIS (International Reactor Innovative and Secure) system has been developed as a multivariate control strategy for reactor power regulation and the control of the helical coil steam generator (HCSG) used in IRIS. A MATLAB-SIMULINK model of the integral reactor was developed and used to demonstrate the design of the MPC. The two major control actions are the control rod reactivity perturbation and the steam control valve setting. The latter is used to regulate the set point value of the superheated steam. The MPC technique minimizes the necessity of on-line controller tuning, and is highly effective for remote and autonomous control actions. As an important part of the instrumentation & control (I&C) strategy, sensor placement in next generation reactors needs to be addressed for both control design and fault diagnosis. This approach is being applied to the IRIS system to enhance the efficiency of reactor monitoring that would assist in a quick and accurate identification of faults. This is achieved by solving the problem from the fault diagnosis perspective, rather than treating the sensor placement as a pure optimization problem. The solution to the problem of sensor placement may be broadly divided into two tasks: (1) fault modeling or prediction of cause-effect behavior of the system, generating a set of variables that are affected whenever a fault occurs, and (2) use of the generated sets to identify sensor locations based on various design criteria, such as observability, resolution, reliability, etc. The proposed algorithm is applied to the design of a sensor network for the IRIS system using multiple design criteria. This enables the designer to obtain a good preliminary design without extensive quantitative information about the process. The control technique will be demonstrated by application to a real process with actuators and associated device time delays. A multivariate flow control loop has been developed with the objective of demonstrating digital control implementation using proportional-integral controllers for water level regulation in coupled tanks. The controller implementation includes self-tuning, control mode selection under device or instrument fault, automated learning, on-line fault monitoring and failure anticipation, and supervisory control. The paper describes the integration of control strategies, fault-tolerant control, and sensor placement for the IRIS system, and demonstration of the technology using an experimental control loop.

Author(s):  
Gomaa Zaki El-Far

This paper presents a robust instrument fault detection (IFD) scheme based on modified immune mechanism based evolutionary algorithm (MIMEA) that determines on line the optimal control actions, detects faults quickly in the control process, and reconfigures the controller structure. To ensure the capability of the proposed MIMEA, repeating cycles of crossover, mutation, and clonally selection are included through the sampling time. This increases the ability of the proposed algorithm to reach the global optimum performance and optimize the controller parameters through a few generations. A fault diagnosis logic system is created based on the proposed algorithm, nonlinear decision functions, and its derivatives with respect to time. Threshold limits are implied to improve the system dynamics and sensitivity of the IFD scheme to the faults. The proposed algorithm is able to reconfigure the control law safely in all the situations. The presented false alarm rates are also clearly indicated. To illustrate the performance of the proposed MIMEA, it is applied successfully to tune and optimize the controller parameters of the nonlinear nuclear power reactor such that a robust behavior is obtained. Simulation results show the effectiveness of the proposed IFD scheme based MIMEA in detecting and isolating the dynamic system faults.


Author(s):  
Antonio Ciriello ◽  
Daniela Kohler ◽  
Terry Morton ◽  
Thomas Lang

The I & C (Instrumentation and Control) design of the CVCS (Chemical and Volume Control System) for the EPR™ nuclear power plant in Taishan (TSN NPP) is shortly introduced and the corresponding I & C module assignment procedure, according to the functional safety class principle, is described. An example of the I & C module assignment procedure is given for a control loop of the CVCS. In addition, the corresponding advantages and drawbacks are described and discussed. The approach described introduces a new method for the concerned I & C design by improving the interface between the system, process, and I & C engineering design. In fact, a fruitful collaboration was reached between the system and I & C design for the EPR™ project in Taishan, for the concerned interface.


2018 ◽  
Vol 50 (3) ◽  
pp. 396-410 ◽  
Author(s):  
Min-jun Peng ◽  
Hang Wang ◽  
Shan-shan Chen ◽  
Geng-lei Xia ◽  
Yong-kuo Liu ◽  
...  

Author(s):  
Chun-Li Xie ◽  
Yong-Kuo Liu ◽  
Hong Xia

In order to guarantee the safety of nuclear power plants (NPP), we built two real-time fault diagnosis systems adopting VISUAL BAS6.0 programming language, which apply neural network technolog and data fusion technology respectively. The fault diagnosis systems interchange data with the simulator timely utilizing communication interface. We insert faults on simulator to test the two systems on line. The advantages and disadvantages are illuminated and contrasted through analyzing the faults diagnostic results off- line, which establish the foundation for the further research and application to the fault diagnosis system of the nuclear power plants.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2205
Author(s):  
Muhammad Usama ◽  
Jaehong Kim

This paper presents a nonlinear cascaded control design that has been developed to (1) improve the self-sensing speed control performance of an interior permanent magnet synchronous motor (IPMSM) drive by reducing its speed and torque ripples and its phase current harmonic distortion and (2) attain the maximum torque while utilizing the minimum drive current. The nonlinear cascaded control system consists of two nonlinear controls for the speed and current control loop. A fuzzy logic controller (FLC) is employed for the outer speed control loop to regulate the rotor shaft speed. Model predictive current control (MPCC) is utilized for the inner current control loop to regulate the drive phase currents. The nonlinear equation for the dq reference current is derived to implement the maximum torque per armature (MTPA) control to achieve the maximum torque while using the minimum current values. The model reference adaptive system (MRAS) was employed for the speed self-sensing mechanism. The self-sensing speed control performance of the IPMSM motor drive was compared with that of the traditional cascaded control schemes. The stability of the sensorless mechanism was studied using the pole placement method. The proposed nonlinear cascaded control was verified based on the simulation results. The robustness of the control design was ensured under various loads and in a wide speed range. The dynamic performance of the motor drive is improved while circumventing the need to tune the proportional-integral (PI) controller. The self-sensing speed control performance of the IPMSM drive was enhanced significantly by the designed cascaded control model.


Sign in / Sign up

Export Citation Format

Share Document