Framework for Graphical User Interfaces of Geospatial Early Warning Systems

Author(s):  
Martin Hammitzsch

An important component of Early Warning Systems (EWS) for man-made and natural hazards is the command and control unit’s Graphical User Interface (GUI). All relevant information of an EWS is concentrated in this GUI and offered to human operators. However, when designing the GUI, not only the user experience and the GUI’s screens are relevant, but also the frameworks and technologies that the GUI is built on and the implementation of the GUI itself are of great importance. Implementations differ based on their applications in different domains but the design and approaches to implement the GUIs of different EWS often show analogies. The design and development of such GUIs are performed repeatedly on some parts of the system for each EWS. Thus, the generic GUI framework of a geospatial EWS for tsunamis is introduced to enable possible synergistic effects on the development of other new related technology. The results presented here could be adopted and reused in other EWS for man-made and natural hazards.

2013 ◽  
pp. 449-464 ◽  
Author(s):  
Martin Hammitzsch

An important component of Early Warning Systems (EWS) for man-made and natural hazards is the command and control unit’s Graphical User Interface (GUI). All relevant information of an EWS is concentrated in this GUI and offered to human operators. However, when designing the GUI, not only the user experience and the GUI’s screens are relevant, but also the frameworks and technologies that the GUI is built on and the implementation of the GUI itself are of great importance. Implementations differ based on their applications in different domains but the design and approaches to implement the GUIs of different EWS often show analogies. The design and development of such GUIs are performed repeatedly on some parts of the system for each EWS. Thus, the generic GUI framework of a geospatial EWS for tsunamis is introduced to enable possible synergistic effects on the development of other new related technology. The results presented here could be adopted and reused in other EWS for man-made and natural hazards.


2011 ◽  
Vol 3 (4) ◽  
pp. 49-63
Author(s):  
Martin Hammitzsch

An important component of Early Warning Systems (EWS) for man-made and natural hazards is the command and control unit’s Graphical User Interface (GUI). All relevant information of an EWS is concentrated in this GUI and offered to human operators. However, when designing the GUI, not only the user experience and the GUI’s screens are relevant, but also the frameworks and technologies that the GUI is built on and the implementation of the GUI itself are of great importance. Implementations differ based on their applications in different domains but the design and approaches to implement the GUIs of different EWS often show analogies. The design and development of such GUIs are performed repeatedly on some parts of the system for each EWS. Thus, the generic GUI framework of a geospatial EWS for tsunamis is introduced to enable possible synergistic effects on the development of other new related technology. The results presented here could be adopted and reused in other EWS for man-made and natural hazards.


2012 ◽  
Vol 12 (3) ◽  
pp. 555-573 ◽  
Author(s):  
M. Hammitzsch ◽  
M. Lendholt ◽  
M. Á. Esbrí

Abstract. The command and control unit's graphical user interface (GUI) is a central part of early warning systems (EWS) for man-made and natural hazards. The GUI combines and concentrates the relevant information of the system and offers it to human operators. It has to support operators successfully performing their tasks in complex workflows. Most notably in critical situations when operators make important decisions in a limited amount of time, the command and control unit's GUI has to work reliably and stably, providing the relevant information and functionality with the required quality and in time. The design of the GUI application is essential in the development of any EWS to manage hazards effectively. The design and development of such GUI is performed repeatedly for each EWS by various software architects and developers. Implementations differ based on their application in different domains. But similarities designing and equal approaches implementing GUIs of EWS are not quite harmonized enough with related activities and do not exploit possible synergy effects. Thus, the GUI's implementation of an EWS for tsunamis is successively introduced, providing a generic approach to be applied in each EWS for man-made and natural hazards.


2016 ◽  
Vol 16 (1) ◽  
pp. 149-166 ◽  
Author(s):  
M. Sättele ◽  
M. Bründl ◽  
D. Straub

Abstract. Early warning systems (EWSs) are increasingly applied as preventive measures within an integrated risk management approach for natural hazards. At present, common standards and detailed guidelines for the evaluation of their effectiveness are lacking. To support decision-makers in the identification of optimal risk mitigation measures, a three-step framework approach for the evaluation of EWSs is presented. The effectiveness is calculated in function of the technical and the inherent reliability of the EWS. The framework is applicable to automated and non-automated EWSs and combinations thereof. To address the specifics and needs of a wide variety of EWS designs, a classification of EWSs is provided, which focuses on the degree of automations encountered in varying EWSs. The framework and its implementation are illustrated through a series of example applications of EWS in an alpine environment.


2015 ◽  
Vol 3 (7) ◽  
pp. 4479-4526 ◽  
Author(s):  
M. Sättele ◽  
M. Bründl ◽  
D. Straub

Abstract. Early warning systems (EWS) are increasingly applied as preventive measures within an integrated risk management approach for natural hazards. At present, common standards and detailed guidelines for the evaluation of their effectiveness are lacking. To support decision-makers in the identification of optimal risk mitigation measures, a three-step framework approach for the evaluation of EWS is presented. The effectiveness is calculated in function of the technical and the inherent reliability of the EWS. The framework is applicable to automated and non-automated EWS and combinations thereof. To address the specifics and needs of a wide variety of EWS designs, a classification of EWS is provided, which focuses on the degree of automations encountered in varying EWS. The framework and its implementation are illustrated through a series of example applications of EWS in an alpine environment.


Author(s):  
Maria Papathoma-Köhle ◽  
Dale Dominey-Howes

The second priority of the Sendai Framework for Disaster Risk Reduction 2015–2030 stresses that, to efficiently manage risk posed by natural hazards, disaster risk governance should be strengthened for all phases of the disaster cycle. Disaster management should be based on adequate strategies and plans, guidance, and inter-sector coordination and communication, as well as the participation and inclusion of all relevant stakeholders—including the general public. Natural hazards that occur with limited-notice or no-notice (LNN) challenge these efforts. Different types of natural hazards present different challenges to societies in the Global North and the Global South in terms of detection, monitoring, and early warning (and then response and recovery). For example, some natural hazards occur suddenly with little or no warning (e.g., earthquakes, landslides, tsunamis, snow avalanches, flash floods, etc.) whereas others are slow onset (e.g., drought and desertification). Natural hazards such as hurricanes, volcanic eruptions, and floods may unfold at a pace that affords decision-makers and emergency managers enough time to affect warnings and to undertake preparedness and mitigative activities. Others do not. Detection and monitoring technologies (e.g., seismometers, stream gauges, meteorological forecasting equipment) and early warning systems (e.g., The Australian Tsunami Warning System) have been developed for a number of natural hazard types. However, their reliability and effectiveness vary with the phenomenon and its location. For example, tsunamis generated by submarine landslides occur without notice, generally rendering tsunami-warning systems inadequate. Where warnings are unreliable or mis-timed, there are serious implications for risk governance processes and practices. To assist in the management of LNN events, we suggest emphasis should be given to the preparedness and mitigation phases of the disaster cycle, and in particular, to efforts to engage and educate the public. Risk and vulnerability assessment is also of paramount importance. The identification of especially vulnerable groups, appropriate land use planning, and the introduction and enforcement of building codes and reinforcement regulations, can all help to reduce casualties and damage to the built environment caused by unexpected events. Moreover, emergency plans have to adapt accordingly as they may differ from the evacuation plans for events with a longer lead-time. Risk transfer mechanisms, such as insurance, and public-private partnerships should be strengthened, and redevelopment should consider relocation and reinforcement of new buildings. Finally, participation by relevant stakeholders is a key concept for the management of LNN events as it is also a central component for efficient risk governance. All relevant stakeholders should be identified and included in decisions and their implementation, supported by good communication before, during, and after natural hazard events. The implications for risk governance of a number of natural hazards are presented and illustrated with examples from different countries from the Global North and the Global South.


Sign in / Sign up

Export Citation Format

Share Document