Cancer Gene Expression Data Analysis Using Rough Based Symmetrical Clustering

2013 ◽  
pp. 1626-1641
Author(s):  
Anasua Sarkar ◽  
Ujjwal Maulik

Identification of cancer subtypes is the central goal in the cancer gene expression data analysis. Modified symmetry-based clustering is an unsupervised learning technique for detecting symmetrical convex or non-convex shaped clusters. To enable fast automatic clustering of cancer tissues (samples), in this chapter, the authors propose a rough set based hybrid approach for modified symmetry-based clustering algorithm. A natural basis for analyzing gene expression data using the symmetry-based algorithm is to group together genes with similar symmetrical patterns of microarray expressions. Rough-set theory helps in faster convergence and initial automatic optimal classification, thereby solving the problem of unknown knowledge of number of clusters in gene expression measurement data. For rough-set-theoretic decision rule generation, each cluster is classified using heuristically searched optimal reducts to overcome overlapping cluster problem. The rough modified symmetry-based clustering algorithm is compared with another newly implemented rough-improved symmetry-based clustering algorithm and existing K-Means algorithm over five benchmark cancer gene expression data sets, to demonstrate its superiority in terms of validity. The statistical analyses are also performed to establish the significance of this rough modified symmetry-based clustering approach.

Author(s):  
Anasua Sarkar ◽  
Ujjwal Maulik

Identification of cancer subtypes is the central goal in the cancer gene expression data analysis. Modified symmetry-based clustering is an unsupervised learning technique for detecting symmetrical convex or non-convex shaped clusters. To enable fast automatic clustering of cancer tissues (samples), in this chapter, the authors propose a rough set based hybrid approach for modified symmetry-based clustering algorithm. A natural basis for analyzing gene expression data using the symmetry-based algorithm is to group together genes with similar symmetrical patterns of microarray expressions. Rough-set theory helps in faster convergence and initial automatic optimal classification, thereby solving the problem of unknown knowledge of number of clusters in gene expression measurement data. For rough-set-theoretic decision rule generation, each cluster is classified using heuristically searched optimal reducts to overcome overlapping cluster problem. The rough modified symmetry-based clustering algorithm is compared with another newly implemented rough-improved symmetry-based clustering algorithm and existing K-Means algorithm over five benchmark cancer gene expression data sets, to demonstrate its superiority in terms of validity. The statistical analyses are also performed to establish the significance of this rough modified symmetry-based clustering approach.


2019 ◽  
Vol 14 (6) ◽  
pp. 491-503
Author(s):  
Md. Shahjaman ◽  
Nishith Kumar ◽  
Md. Nurul Haque Mollah

Background: DNA microarray technology allows researchers to measure the expression levels of thousands of genes simultaneously. The main objective of microarray gene expression (GE) data analysis is to detect biomarker genes that are Differentially Expressed (DE) between two or more experimental groups/conditions. Objective: There are some popular statistical methods in the literature for the selection of biomarker genes. However, most of them often produce misleading results in presence of outliers. Therefore, in this study, we introduce a robust approach to overcome the problems of classical methods. Methods: We use median and median absolute deviation (MAD) for our robust procedure. In this procedure, a gene was considered as outlying gene if at least one of the expressions of this gene does not belong to a certain interval of the proposed outlier detection rule. Otherwise, this gene was considered as a non-outlying gene. Results: We investigate the performance of the proposed method in a comparison of the traditional method using both simulated and real gene expression data analysis. From a real colon cancer gene expression data analysis, the proposed method detected an additional fourteen (14) DE genes that were not detected by the traditional methods. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, we observed that these additional 14 DE genes are involved in three important metabolic pathways of cancer disease. The proposed method also detected nine (9) additional DE genes from another head-and-neck cancer gene expression data analysis; those involved in top ten metabolic pathways obtain from the KEGG pathway database. Conclusion: The simulation as well as real cancer gene expression datasets results show better performance with our proposed procedure. Therefore, the additional genes detected by the proposed procedure require further wet lab validation.


Sign in / Sign up

Export Citation Format

Share Document