Sustainable Waste Management System and Reverse Logistic Network Design in Plastic Industry

Author(s):  
Emel Kizilkaya Aydogan ◽  
Nuray Ates ◽  
Nigmet Uzal ◽  
Fulya Zaral ◽  
Petraq Papajorgji

The shortage of natural sources and the threat of the bad trend have forced the industries to find environmentally-friendly alternatives and ecological approaches in their production line. In some countries, regulations have been issued for industries about this subject. Due to these reasons and more of them, logistic firms have been forced to take into consideration decreasing material and energy consumption and minimizing waste production in planning their network designs. In practice, it might be necessary to simultaneously optimize more than one conflicting objective to obtain effective and realistic solutions. In this chapter, current logistics network design of a plastic industry in Turkey has been investigated and reverse logistics network design has been developed to minimize waste production and to achieve green production. This chapter presents a mathematical model which is a fuzzy goal programming model for imprecise goals for reverse logistic network design with multiple objectives in plastic sector. The considered objectives are to reduce cost in reverse logistics, to improve product quality, and to provide environmental benefits by minimizing waste production.

2013 ◽  
pp. 867-884
Author(s):  
Emel Kizilkaya Aydogan ◽  
Nuray Ates ◽  
Nigmet Uzal ◽  
Fulya Zaral ◽  
Petraq Papajorgji

The shortage of natural sources and the threat of the bad trend have forced the industries to find environmentally-friendly alternatives and ecological approaches in their production line. In some countries, regulations have been issued for industries about this subject. Due to these reasons and more of them, logistic firms have been forced to take into consideration decreasing material and energy consumption and minimizing waste production in planning their network designs. In practice, it might be necessary to simultaneously optimize more than one conflicting objective to obtain effective and realistic solutions. In this chapter, current logistics network design of a plastic industry in Turkey has been investigated and reverse logistics network design has been developed to minimize waste production and to achieve green production. This chapter presents a mathematical model which is a fuzzy goal programming model for imprecise goals for reverse logistic network design with multiple objectives in plastic sector. The considered objectives are to reduce cost in reverse logistics, to improve product quality, and to provide environmental benefits by minimizing waste production.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Xumei Zhang ◽  
Bo Zou ◽  
Zhaohui Feng ◽  
Yan Wang ◽  
Wei Yan

Remanufacturing has gained great recognition in recent years due to its economic and environmental benefits and effectiveness in the value retention of waste products. Many studies on reverse logistics have considered remanufacturing as a key node for network optimization, but few literature reviews have explicitly mentioned remanufacturing as a main feature in their analysis. The aim of this review is to bridge this gap. In total, 125 papers on remanufacturing reverse logistics network design have been reviewed and conclusions have been drawn from four aspects: (1) in terms of network structure, the functional nodes of new hybrid facilities and the network structure combined with the remanufacturing technologies of products are the key points in the research. (2) In the mathematical model, the multi-objective function considered from different aspects, the uncertainty of recovery time and recovery channel in addition to quantity and quality, and the selection of appropriate algorithms are worth studying. (3) While considering product types, the research of a reverse logistics network of some products is urgently needed but inadequate, such as medical and furniture products. (4) As for cutting-edge technologies, the application of new technologies, such as intelligent remanufacturing technology and big data, will have a huge impact on the remanufacturing of a reverse logistics network and needs to be considered in our research.


Author(s):  
Hang Dai ◽  
Qing Wang

Reverse logistic network design problems involve strategic decisions which influence tactical and operational decisions. In particular, they involve facility location, transportation and inventory decisions, which affect the cost of the distribution system and the quality of the customer service level. Locating a collection centre is an important strategic decision, as purchasing or building facilities requires sizable investment; also the network transportation cost is affected by the selection of facility locations. The location that is selected must therefore take into account all the parameters and variables that are relevant and the decision may even affect demand. In this paper, network design for reverse logistics is investigated to solve the End-of-life Vehicles (ELV) collection centres location problem. We start by giving an understanding of the process of this reverse logistics network design by considering the features of reverse logistics, the role of ELV management and use of optimization methods. Based on this, a reverse logistics network design case for collection of End-of-life Vehicles is presented by formulating the problem into a mixed-integer linear program (MILP), taking into consideration the Capacitated Facility Location Problem. The solution to this model is obtained using IBM CPLEX Optimization Studio©. In addition the applicability of the model in other reverse logistic networks is discussed and the subjects for further research are pointed out.


2021 ◽  
pp. 0734242X2110039
Author(s):  
Elham Shadkam

Today, reverse logistics (RL) is one of the main activities of supply chain management that covers all physical activities associated with return products (such as collection, recovery, recycling and destruction). In this regard, the designing and proper implementation of RL, in addition to increasing the level of customer satisfaction, reduces inventory and transportation costs. In this paper, in order to minimize the costs associated with fixed costs, material flow costs, and the costs of building potential centres, a complex integer linear programming model for an integrated direct logistics and RL network design is presented. Due to the outbreak of the ongoing global coronavirus pandemic (COVID-19) at the beginning of 2020 and the consequent increase in medical waste, the need for an inverse logistics system to manage waste is strongly felt. Also, due to the worldwide vaccination in the near future, this waste will increase even more and careful management must be done in this regard. For this purpose, the proposed RL model in the field of COVID-19 waste management and especially vaccine waste has been designed. The network consists of three parts – factory, consumers’ and recycling centres – each of which has different sub-parts. Finally, the proposed model is solved using the cuckoo optimization algorithm, which is one of the newest and most powerful meta-heuristic algorithms, and the computational results are presented along with its sensitivity analysis.


2018 ◽  
Vol 54 ◽  
pp. 311-331 ◽  
Author(s):  
Sajan T John ◽  
R Sridharan ◽  
P N Ram Kumar ◽  
M. Krishnamoorthy

Sign in / Sign up

Export Citation Format

Share Document