Graph Intersection-Based Benchmarking Algorithm for Maximum Stability Data Gathering Trees in Wireless Mobile Sensor Networks

Author(s):  
Natarajan Meghanathan ◽  
Philip Mumford

The authors propose a graph intersection-based benchmarking algorithm to determine the sequence of longest-living stable data gathering trees for wireless mobile sensor networks whose topology changes dynamically with time due to the random movement of the sensor nodes. Referred to as the Maximum Stability-based Data Gathering (Max.Stable-DG) algorithm, the algorithm assumes the availability of complete knowledge of future topology changes and is based on the following greedy principle coupled with the idea of graph intersections: Whenever a new data gathering tree is required at time instant t corresponding to a round of data aggregation, choose the longest-living data gathering tree from time t. The above strategy is repeated for subsequent rounds over the lifetime of the sensor network to obtain the sequence of longest-living stable data gathering trees spanning all the live sensor nodes in the network such that the number of tree discoveries is the global minimum. In addition to theoretically proving the correctness of the Max.Stable-DG algorithm (that it yields the lower bound for the number of discoveries for any network-wide communication topology like spanning trees), the authors also conduct exhaustive simulations to evaluate the performance of the Max.Stable-DG trees and compare to that of the minimum-distance spanning tree-based data gathering trees with respect to metrics such as tree lifetime, delay per round, node lifetime and network lifetime, under both sufficient-energy and energy-constrained scenarios.

2020 ◽  
Vol 16 (4) ◽  
pp. 155014772091451 ◽  
Author(s):  
Shuguang Deng ◽  
Buwen Cao ◽  
Xiang Xiao ◽  
Hua Qin ◽  
Bing Yang

With the development of modern communication, available spectrum resources are becoming increasingly scarce, which reduce network throughput. Moreover, the mobility of nodes results in the changes of network topological structure. Hence, a considerable amount of control information is consumed, which causes a corresponding increase in network power consumption and exerts a substantial impact on network lifetime. To solve the real-time transmission problem in large-scale wireless mobile sensor networks, opportunistic spectrum access is applied to adjust the transmission power of sensor nodes and the transmission velocity of data. A cognitive routing and optimization protocol based on multiple channels with a cross-layer design is proposed to study joint optimal cognitive routing with maximizing network throughput and network lifetime. Experimental results show that the cognitive routing and optimization protocol based on multiple channels achieves low computational complexity, which maximizes network throughput and network lifetime. This protocol can be also effectively applied to large-scale wireless mobile sensor networks.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Chen ◽  
Jie Jia ◽  
Yingyou Wen ◽  
Dazhe Zhao

Energy hole is an inherent problem caused by heavier traffic loads of sensor nodes nearer the sink because of more frequent data transmission, which is strongly dependent on the topology induced by the sensor deployment. In this paper, we propose an autonomous sensor redeployment algorithm to balance energy consumption and mitigate energy hole for unattended mobile sensor networks. First, with the target area divided into several equal width coronas, we present a mathematical problem modeling sensor node layout as well as transmission pattern to maximize network coverage and reduce communication cost. And then, by calculating the optimal node density for each corona to avoid energy hole, a fully distributed movement algorithm is proposed, which can achieve an optimal distribution quickly only by pushing or pulling its one-hop neighbors. The simulation results demonstrate that our algorithm achieves a much smaller average moving distance and a much longer network lifetime than existing algorithms and can eliminate the energy hole problem effectively.


Sign in / Sign up

Export Citation Format

Share Document