Towards Smarter Cities and Roads

Author(s):  
Irina Tal ◽  
Gabriel-Miro Muntean

This chapter highlights the importance of Vehicular Ad-Hoc Networks (VANETs) in the context of smarter cities and roads, a topic that currently attracts significant academic, industrial, and governmental planning, research, and development efforts. In order for VANETs to become reality, a very promising avenue is to bring together multiple wireless technologies in the architectural design. Clustering can be employed in designing such a VANET architecture that successfully uses different technologies. Moreover, as clustering addresses some of VANETs' major challenges, such as scalability and stability, it seems clustering will have an important role in the desired vehicular connectivity in the cities and roads of the future. This chapter presents a comprehensive survey of clustering schemes in the VANET research area, covering aspects that have never been addressed before in a structured manner. The survey presented in this chapter provides a general classification of the clustering algorithms, presents some of the most advanced and latest algorithms in VANETs, and in addition, constitutes the only work in the literature to the best of authors' knowledge that also reviews the performance assessment of clustering algorithms.

Author(s):  
Irina Tal ◽  
Gabriel-Miro Muntean

This chapter highlights the importance of Vehicular Ad-Hoc Networks (VANETs) in the context of smarter cities and roads, a topic that currently attracts significant academic, industrial, and governmental planning, research, and development efforts. In order for VANETs to become reality, a very promising avenue is to bring together multiple wireless technologies in the architectural design. Clustering can be employed in designing such a VANET architecture that successfully uses different technologies. Moreover, as clustering addresses some of VANETs' major challenges, such as scalability and stability, it seems clustering will have an important role in the desired vehicular connectivity in the cities and roads of the future. This chapter presents a comprehensive survey of clustering schemes in the VANET research area, covering aspects that have never been addressed before in a structured manner. The survey presented in this chapter provides a general classification of the clustering algorithms, presents some of the most advanced and latest algorithms in VANETs, and in addition, constitutes the only work in the literature to the best of authors' knowledge that also reviews the performance assessment of clustering algorithms.


Author(s):  
Irina Tal ◽  
Gabriel-Miro Muntean

This chapter highlights the importance of vehicular ad-hoc networks (VANETs) in the context of the 5G-enabled smarter cities and roads, a topic that attracts significant interest. In order for VANETs and its associated applications to become a reality, a very promising avenue is to bring together multiple wireless technologies in the architectural design. 5G is envisioned to have a heterogeneous network architecture. Clustering is employed in designing optimal VANET architectures that successfully use different technologies. Therefore, clustering has the potential to play an important role in the 5G-VANET-enabled solutions. This chapter presents a survey of clustering approaches in the VANET research area. The survey provides a general classification of the clustering algorithms, presents some of the most advanced and latest algorithms in VANETs, and it is among the fewest works in the literature that reviews the performance assessment of clustering algorithms.


Author(s):  
Irina Tal ◽  
Gabriel-Miro Muntean

This chapter highlights the importance of vehicular ad-hoc networks (VANETs) in the context of the 5G-enabled smarter cities and roads, a topic that attracts significant interest. In order for VANETs and its associated applications to become a reality, a very promising avenue is to bring together multiple wireless technologies in the architectural design. 5G is envisioned to have a heterogeneous network architecture. Clustering is employed in designing optimal VANET architectures that successfully use different technologies. Therefore, clustering has the potential to play an important role in the 5G-VANET-enabled solutions. This chapter presents a survey of clustering approaches in the VANET research area. The survey provides a general classification of the clustering algorithms, presents some of the most advanced and latest algorithms in VANETs, and it is among the fewest works in the literature that reviews the performance assessment of clustering algorithms.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


2021 ◽  
Vol 12 (4) ◽  
pp. 1-30
Author(s):  
Zhenchang Xia ◽  
Jia Wu ◽  
Libing Wu ◽  
Yanjiao Chen ◽  
Jian Yang ◽  
...  

Vehicular ad hoc networks ( VANETs ) and the services they support are an essential part of intelligent transportation. Through physical technologies, applications, protocols, and standards, they help to ensure traffic moves efficiently and vehicles operate safely. This article surveys the current state of play in VANETs development. The summarized and classified include the key technologies critical to the field, the resource-management and safety applications needed for smooth operations, the communications and data transmission protocols that support networking, and the theoretical and environmental constructs underpinning research and development, such as graph neural networks and the Internet of Things. Additionally, we identify and discuss several challenges facing VANETs, including poor safety, poor reliability, non-uniform standards, and low intelligence levels. Finally, we touch on hot technologies and techniques, such as reinforcement learning and 5G communications, to provide an outlook for the future of intelligent transportation systems.


Sign in / Sign up

Export Citation Format

Share Document