Model-Based Testing of Highly Configurable Embedded Systems

Author(s):  
Detlef Streitferdt ◽  
Florian Kantz ◽  
Philipp Nenninger ◽  
Thomas Ruschival ◽  
Holger Kaul ◽  
...  

This chapter reports the results of a cycle computer case study and a previously conducted industrial case study from the automation domain. The key result is a model-based testing process for highly configurable embedded systems. The initial version of the testing process was built upon parameterizeable systems. The cycle computer case study adds the configuration using the product line concept and a feature model to store the parameterizable data. Thus, parameters and their constraints can be managed in a very structured way. Escalating demand for flexibility has made modern embedded software systems highly adjustable. This configurability is often realized through parameters and a highly configurable system possesses a handful of those. Small changes in parameter values can often account for significant changes in the system's behavior, whereas in some other cases, changed parameters may not result in any perceivable reaction. The case studies address the challenge of applying model-based testing to configurable embedded software systems in order to reduce development effort. As a result of the case studies, a model-based testing process was developed. This process integrates existing model-based testing methods and tools such as combinatorial design and constraint processing as well as the product line engineering approach. The testing process was applied as part of the case studies and analyzed in terms of its actual saving potentials, which turned out to reduce the testing effort by more than a third.

Author(s):  
Detlef Streitferdt ◽  
Florian Kantz ◽  
Philipp Nenninger ◽  
Thomas Ruschival ◽  
Holger Kaul ◽  
...  

This chapter reports the results of a cycle computer case study and a previously conducted industrial case study from the automation domain. The key result is a model-based testing process for highly configurable embedded systems. The initial version of the testing process was built upon parameterizeable systems. The cycle computer case study adds the configuration using the product line concept and a feature model to store the parameterizable data. Thus, parameters and their constraints can be managed in a very structured way. Escalating demand for flexibility has made modern embedded software systems highly adjustable. This configurability is often realized through parameters and a highly configurable system possesses a handful of those. Small changes in parameter values can often account for significant changes in the system's behavior, whereas in some other cases, changed parameters may not result in any perceivable reaction. The case studies address the challenge of applying model-based testing to configurable embedded software systems in order to reduce development effort. As a result of the case studies, a model-based testing process was developed. This process integrates existing model-based testing methods and tools such as combinatorial design and constraint processing as well as the product line engineering approach. The testing process was applied as part of the case studies and analyzed in terms of its actual saving potentials, which turned out to reduce the testing effort by more than a third.


Author(s):  
Detlef Streitferdt ◽  
Florian Kantz ◽  
Philipp Nenninger ◽  
Thomas Ruschival ◽  
Holger Kaul ◽  
...  

This article reports the results of an industrial case study demonstrating the efficacy of a model-based testing process in assuring the quality of highly configurable systems from the automation domain. Escalating demand for flexibility has made modern embedded software systems highly configurable. This configurability is often realized through parameters and a highly configurable system possesses a handful of those. Small changes in parameter values can account for significant changes in the system’s behavior, whereas in other cases, changed parameters may not result in any perceivable reaction. This case study addresses the challenge of applying model-based testing to configurable embedded software systems to reduce development effort. As a result of the case study, a model-based testing process was developed and tailored toward the needs of the automation domain. This process integrates existing model-based testing methods and tools, such as combinatorial design and constraint processing. The testing process was applied as part of the case study and analyzed in terms of its actual saving potentials, which reduced the testing effort by more than a third.


Author(s):  
Detlef Streitferdt ◽  
Florian Kantz ◽  
Philipp Nenninger ◽  
Thomas Ruschival ◽  
Holger Kaul ◽  
...  

This article reports the results of an industrial case study demonstrating the efficacy of a model-based testing process in assuring the quality of highly configurable systems from the automation domain. Escalating demand for flexibility has made modern embedded software systems highly configurable. This configurability is often realized through parameters and a highly configurable system possesses a handful of those. Small changes in parameter values can account for significant changes in the system’s behavior, whereas in other cases, changed parameters may not result in any perceivable reaction. This case study addresses the challenge of applying model-based testing to configurable embedded software systems to reduce development effort. As a result of the case study, a model-based testing process was developed and tailored toward the needs of the automation domain. This process integrates existing model-based testing methods and tools, such as combinatorial design and constraint processing. The testing process was applied as part of the case study and analyzed in terms of its actual saving potentials, which reduced the testing effort by more than a third.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 63 ◽  
Author(s):  
Rabatul Aduni Sulaiman ◽  
Dayang Norhayati A. Jawawi ◽  
Shahliza Abd Halim

Rapid Quality assurance is an important element in software testing in order to produce high quality products in Software Product Line (SPL). One of the testing techniques that can enhance product quality is Model-Based Testing (MBT). Due to MBT effectiveness in terms of reuse and potential to be adapted, this technique has become an efficient approach that is capable to handle SPL requirements. In this paper, the authors present an approach to manage variability and requirements by using Feature Model (FM) and MBT. This paper focuses on modelling the integration towards enhancing product quality and reducing testing effort. Further, the authors considered coverage criteria, including pairwise coverage, all-state coverage, and all-transition coverage, in order to improve the quality of products. For modelling purposes, the authors constructed a mapping model based on variability in FM and behaviour from statecharts. The proposed approach was validated using mobile phone SPL case study. 


Author(s):  
Hitesh Yadav ◽  
Rita Chhikara ◽  
Charan Kumari

Background: Software Product Line is the group of multiple software systems which share the similar set of features with multiple variants. Feature model is used to capture and organize features used in different multiple organization. Objective: The objective of this research article is to obtain an optimized subset of features which are capable of providing high performance. Methods: In order to achieve the desired objective, two methods have been proposed. a) An improved objective function which is used to compute the contribution of each feature with weight based methodology. b) A hybrid model is employed to optimize the Software Product Line problem. Results: Feature sets varying in size from 100 to 1000 have been used to compute the performance of the Software Product Line. Conclusion: The results shows that proposed hybrid model outperforms the state of art metaheuristic algorithms.


Sign in / Sign up

Export Citation Format

Share Document