Nonparametric Bayesian Prediction of Primary Users' Air Traffics in Cognitive Radio Networks

Author(s):  
Ju Bin Song ◽  
Zhu Han

In cognitive radio networks a secondary user needs to estimate the primary users' air traffic patterns so as to optimize its transmission strategy. In this chapter, the authors describe a nonparametric Bayesian method for identifying traffic applications, since the traffic applications have their own distinctive air traffic patterns. In the proposed algorithm, the collapsed Gibbs sampler is applied to cluster the air traffic applications using the infinite Gaussian mixture model over the feature space of the packet length, the packet inter-arrival time, and the variance of packet lengths. The authors analyze the effectiveness of their proposed technique by extensive simulation using the measured data obtained from the WiMax networks.

Author(s):  
Sylwia Romaszko ◽  
Petri Mähönen

In the case of Opportunistic Spectrum Access (OSA), unlicensed secondary users have only limited knowledge of channel parameters or other users' information. Spectral opportunities are asymmetric due to time and space varying channels. Owing to this inherent asymmetry and uncertainty of traffic patterns, secondary users can have trouble detecting properly the real usability of unoccupied channels and as a consequence visiting channels in such a way that they can communicate with each other in a bounded period of time. Therefore, the channel service quality, and the neighborhood discovery (NB) phase are fundamental and challenging due to the dynamics of cognitive radio networks. The authors provide an analysis of these challenges, controversies, and problems, and review the state-of-the-art literature. They show that, although recently there has been a proliferation of NB protocols, there is no optimal solution meeting all required expectations of CR users. In this chapter, the reader also finds possible solutions focusing on an asynchronous channel allocation covering a channel ranking.


2013 ◽  
Vol 4 (4) ◽  
pp. 1-15
Author(s):  
Yanxiao Zhao ◽  
Bighnaraj Panigrahi ◽  
Kazem Sohraby ◽  
Wei Wang

Cognitive radio networks (CRNs) have received considerable attention and viewed as a promising paradigm for future wireless networking. Its major difference from the traditional wireless networks is that secondary users are allowed to access the channel if they pose no harmful interference to primary users. This distinct feature of CRNs has raised an essential and challenging question, i.e., how to accurately estimate interference to the primary users from the secondary users? In addition, spectrum sensing plays a critical role in CRNs. Secondary users have to sense the channel before they transmit. A two-state sensing model is commonly used, which classifies a channel into either busy or idle state. Secondary users can only utilize a channel when it is detected to be in idle state. In this paper, we tackle the estimation of interference at the primary receiver due to concurrently active secondary users. With the spectrum sensing, secondary users are refrained from transmitting once an active user falls into their sensing range. As a result, the maximum number of simultaneously interfering secondary users is bounded, typically ranging from 1 to 4. This significant conclusion considerably simplifies interference modeling in CRNs. The authors present all the cases with possible simultaneously interfering secondary users. Moreover, the authors derive the probability for each case. Extensive simulations are conducted and results validate the effectiveness and accuracy of the proposed approach.


Author(s):  
K. Annapurna ◽  
B. Seetha Ramanjaneyulu

Satisfying the Quality of Service (QoS) is often a challenge in cognitive radio networks, because they depend on opportunistic channel accessing. In this context, appropriate pricing of vacant channels that is linked to the preference in their allocation, is found to be useful. However, ambiguity on the possible price at which the channel would be allotted is still a concern. In this work, an auction mechanism in which maximum value of the bid is predefined is proposed. With this, users quote their bid values as per their needs of getting the channels, up to the predefined maximum allowed bid price. However, final price of allocation is decided based on the sum total demand from all the users and the availability of vacant channels. Performance of the system is found in terms of blocking probabilities of secondary users and revenues to primary users. The proposed system is found to yield similar quantum of revenues as that of the Generalized Second Price (GSP) auction, while offering much lesser blocking probabilities to high-priority users to satisfy their QoS requirements.


Sign in / Sign up

Export Citation Format

Share Document