Intention and Body-Mood Engineering via Proactive Robot Moves in HRI

Author(s):  
O. Can Görür ◽  
Aydan M. Erkmen

This chapter focuses on emotion and intention engineering by socially interacting robots that induce desired emotions/intentions in humans. The authors provide all phases that pave this road, supported by overviews of leading works in the literature. The chapter is partitioned into intention estimation, human body-mood detection through external-focused attention, path planning through mood induction and reshaping intention. Moreover, the authors present their novel concept, with implementation, of reshaping current human intention into a desired one, using contextual motions of mobile robots. Current human intention has to be deviated towards the new desired one by destabilizing the obstinance of human intention, inducing positive mood and making the “robot gain curiosity of human”. Deviations are generated as sequences of transient intentions tracing intention trajectories. The authors use elastic networks to generate, in two modes of body mood: “confident” and “suspicious”, transient intentions directed towards the desired one, choosing among intentional robot moves previously learned by HMM.

2019 ◽  
pp. 247-275
Author(s):  
O. Can Görür ◽  
Aydan M. Erkmen

This chapter focuses on emotion and intention engineering by socially interacting robots that induce desired emotions/intentions in humans. The authors provide all phases that pave this road, supported by overviews of leading works in the literature. The chapter is partitioned into intention estimation, human body-mood detection through external-focused attention, path planning through mood induction and reshaping intention. Moreover, the authors present their novel concept, with implementation, of reshaping current human intention into a desired one, using contextual motions of mobile robots. Current human intention has to be deviated towards the new desired one by destabilizing the obstinance of human intention, inducing positive mood and making the “robot gain curiosity of human”. Deviations are generated as sequences of transient intentions tracing intention trajectories. The authors use elastic networks to generate, in two modes of body mood: “confident” and “suspicious”, transient intentions directed towards the desired one, choosing among intentional robot moves previously learned by HMM.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4156
Author(s):  
Luís B. P. Nascimento ◽  
Dennis Barrios-Aranibar ◽  
Vitor G. Santos ◽  
Diego S. Pereira ◽  
William C. Ribeiro ◽  
...  

The planning of safe paths is an important issue for autonomous robot systems. The Probabilistic Foam method (PFM) is a planner that guarantees safe paths bounded by a sequence of structures called bubbles that provides safe regions. This method performs the planning by covering the free configuration space with bubbles, an approach analogous to a breadth-first search. To improve the propagation process and keep the safety, we present three algorithms based on Probabilistic Foam: Goal-biased Probabilistic Foam (GBPF), Radius-biased Probabilistic Foam (RBPF), and Heuristic-guided Probabilistic Foam (HPF); the last two are proposed in this work. The variant GBPF is fast, HPF finds short paths, and RBPF finds high-clearance paths. Some simulations were performed using four different maps to analyze the behavior and performance of the methods. Besides, the safety was analyzed considering the new propagation strategies.


2013 ◽  
Vol 14 (3) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Ma ◽  
Ya Xu ◽  
Guo-qiang Sun ◽  
Li-xia Deng ◽  
Yi-bin Li

Sign in / Sign up

Export Citation Format

Share Document