Improving Multimodality Image Fusion through Integrate AFL and Wavelet Transform

Author(s):  
Girraj Prasad Rathor ◽  
Sanjeev Kumar Gupta

Image fusion based on different wavelet transform is the most commonly used image fusion method, which fuses the source pictures data in wavelet space as per some fusion rules. But, because of the uncertainties of the source images contributions to the fused image, to design a good fusion rule to incorporate however much data as could reasonably be expected into the fused picture turns into the most vital issue. On the other hand, adaptive fuzzy logic is the ideal approach to determine uncertain issues, yet it has not been utilized as a part of the outline of fusion rule. A new fusion technique based on wavelet transform and adaptive fuzzy logic is introduced in this chapter. After doing wavelet transform to source images, it computes the weight of each source images coefficients through adaptive fuzzy logic and then fuses the coefficients through weighted averaging with the processed weights to acquire a combined picture: Mutual Information, Peak Signal to Noise Ratio, and Mean Square Error as criterion.

Biometrics ◽  
2017 ◽  
pp. 1754-1768
Author(s):  
Girraj Prasad Rathor ◽  
Sanjeev Kumar Gupta

Image fusion based on different wavelet transform is the most commonly used image fusion method, which fuses the source pictures data in wavelet space as per some fusion rules. But, because of the uncertainties of the source images contributions to the fused image, to design a good fusion rule to incorporate however much data as could reasonably be expected into the fused picture turns into the most vital issue. On the other hand, adaptive fuzzy logic is the ideal approach to determine uncertain issues, yet it has not been utilized as a part of the outline of fusion rule. A new fusion technique based on wavelet transform and adaptive fuzzy logic is introduced in this chapter. After doing wavelet transform to source images, it computes the weight of each source images coefficients through adaptive fuzzy logic and then fuses the coefficients through weighted averaging with the processed weights to acquire a combined picture: Mutual Information, Peak Signal to Noise Ratio, and Mean Square Error as criterion.


2016 ◽  
Vol 16 (04) ◽  
pp. 1650022 ◽  
Author(s):  
Deepak Gambhir ◽  
Meenu Manchanda

Medical image fusion is being used at large by clinical professionals for improved diagnosis and treatment of diseases. The main aim of image fusion process is to combine complete information from all input images into a single fused image. Therefore, a novel fusion rule is proposed for fusing medical images based on Daubechies complex wavelet transform (DCxWT). Input images are first decomposed using DCxWT. The complex coefficients so obtained are then fused using normalized correlation based fusion rule. Finally, the fused image is obtained by inverse DCxWT with all combined complex coefficients. The performance of the proposed method has been evaluated and compared both visually and objectively with DCxWT based fusion methods using state-of art fusion rules as well as with existing fusion techniques. Experimental results and comparative study demonstrate that the proposed fusion technique generates better results than existing fusion rules as well as with other fusion techniques.


2021 ◽  
Vol 3 (1) ◽  
pp. 68-82
Author(s):  
Harpreet Kaur ◽  
◽  
Deepika Koundal ◽  
Virendar Kadyan ◽  
Navneet Kaur ◽  
...  

In medical domain, various multimodalities such as Computer tomography (CT) and Magnetic resonance imaging (MRI) are integrated into a resultant fused image. Image fusion (IF) is a method by which vital information can be preserved by extracting all important information from the multiple images into the resultant fused image. The analytical and visual image quality can be enhanced by the integration of different images. In this paper, a new algorithm has been proposed on the basis of guided filter with new fusion rule for the fusion of different imaging modalities such as MRI and Fluorodeoxyglucose images of brain for the detection of tumor. The performance of the proposed method has been evaluated and compared with state-of-the-art image fusion techniques using various qualitative as well as quantitative evaluation metrics. From the results, it has been observed that more information has achieved on edges and content visibility is also high as compared to the other techniques which makes it more suitable for real applications. The experimental results are evaluated on the basis of with-reference and without-references metric such as standard deviation, entropy, peak signal to noise ratio, mutual information etc.


2019 ◽  
Vol 64 (2) ◽  
pp. 211-220
Author(s):  
Sumanth Kumar Panguluri ◽  
Laavanya Mohan

Nowadays the result of infrared and visible image fusion has been utilized in significant applications like military, surveillance, remote sensing and medical imaging applications. Discrete wavelet transform based image fusion using unsharp masking is presented. DWT is used for decomposing input images (infrared, visible). Approximation and detailed coefficients are generated. For improving contrast unsharp masking has been applied on approximation coefficients. Then for merging approximation coefficients produced after unsharp masking average fusion rule is used. The rule that is used for merging detailed coefficients is max fusion rule. Finally, IDWT is used for generating a fused image. The result produced using the proposed fusion method is providing good contrast and also giving better performance results in reference to mean, entropy and standard deviation when compared with existing techniques.


2016 ◽  
Vol 15 (4) ◽  
pp. 6698-6701
Author(s):  
Navjot Kaur ◽  
Navneet Kaur

Image fusion is a process to combine two or more images so that fused image becomes more informative than input images. Fusion process provides the spectral and spatial information of image. But main problem occurs of computational time when high resolution images are fused. So this paper describe a new algorithm that is based on wavelet transform in which transform is applied after forming the image into different blocks. This algorithm divides the complete image into different blocks andthen comparing the images by finding the mean square error.By using the threshold value wavelet transform is applied to require block. The transformed blocks are fused by using different fusion algorithms like averaging method, maximum or minimum pixel replacement fusion algorithm. By applying inverse of wavelet transform fused image is constructed which is more informative than the input images. The quality of fused image is find out by comparing the fused image by the original image by finding mean square error and peak signal to noise ratio. The whole process of fusion is applied on the complete image and also by using blocking method then by finding the time parameters it can be conclude that the proposed algorithm reduces the computational time by 10 times to the existence method.


2021 ◽  
pp. 3228-3236
Author(s):  
Nada Jasim Habeeb

Combining multi-model images of the same scene that have different focus distances can produce clearer and sharper images with a larger depth of field. Most available image fusion algorithms are superior in results. However, they did not take into account the focus of the image. In this paper a fusion method is proposed to increase the focus of the fused image and to achieve highest quality image using the suggested focusing filter and Dual Tree-Complex Wavelet Transform. The focusing filter consist of a combination of two filters, which are Wiener filter and a sharpening filter. This filter is used before the fusion operation using Dual Tree-Complex Wavelet Transform. The common fusion rules, which are the average-fusion rule and maximum-fusion rule, were used to obtain the fused image. In the experiment, using the focus operators, the performance of the proposed fusion algorithm was compared with the existing algorithms. The results showed that the proposed method is better than these fusion methods in terms of the focus and quality. 


2019 ◽  
Vol 28 (4) ◽  
pp. 505-516
Author(s):  
Wei-bin Chen ◽  
Mingxiao Hu ◽  
Lai Zhou ◽  
Hongbin Gu ◽  
Xin Zhang

Abstract Multi-focus image fusion means fusing a completely clear image with a set of images of the same scene and under the same imaging conditions with different focus points. In order to get a clear image that contains all relevant objects in an area, the multi-focus image fusion algorithm is proposed based on wavelet transform. Firstly, the multi-focus images were decomposed by wavelet transform. Secondly, the wavelet coefficients of the approximant and detail sub-images are fused respectively based on the fusion rule. Finally, the fused image was obtained by using the inverse wavelet transform. Among them, for the low-frequency and high-frequency coefficients, we present a fusion rule based on the weighted ratios and the weighted gradient with the improved edge detection operator. The experimental results illustrate that the proposed algorithm is effective for retaining the detailed images.


Sign in / Sign up

Export Citation Format

Share Document