Interoperability in Marine Sensor Networks through SWE Services

Author(s):  
Alessandro Oggioni ◽  
Paolo Tagliolato ◽  
Cristiano Fugazza ◽  
Monica Pepe ◽  
Stefano Menegon ◽  
...  

The rapid growth and development in different fields related to sensors has, together with the huge increase of devices due to the decrease of device costs, led to a shift from traditional monitoring, where the data collected is not subject to any management actions, to sensor/processing networks, where in the life cycle more stages are devoted to make the data accessible. Data integration is the first step in advanced environmental monitoring, but assuring that heterogeneous systems can interoperate is still a challenge. The Sensor Web Enablement (SWE) initiative defines a framework to address this issue, offering a set of standard models and interfaces to improve sensor interoperability and to face quality issues in the reliability of sensors. The need for seamless access to observations from marine sensors has been the focus of several research projects. This chapter presents the actions taken in the development of the Spatial Data Infrastructure for project RITMARE to ease the adoption of SWE within the Italian marine community overcoming the main constraints in SWE adoption.

Author(s):  
Devanjan Bhattacharya ◽  
Marco Painho

Spatio-temporal aspects of data lead to critical information. Sensors capture data at all scales continually so it is imperative that useful information be extracted ubiquitously and regularly. Location plays a vital part by helping understand relations between datasets. It is crucial to link developmental works with spatial attributes and current challenge is to create an open platform that manages real-time sensor data and provides critical spatial analytics atop expert domain knowledge provided in the system. That is a two-faced problem where the solution tackles not only data from multiple sources but also runs data management platform, a spatial data infrastructure(SDI) as backbone framework able to harness sensor web(SW). The paper proposes development of such a globally shared open spatial expert system(ES), SmaCiSENS, a first of a kind geo-enabled knowledge based(KB) ES for multiple fields, smarter cities to climate modeling. SmaCiSENS is integration of SW and SDI with domain KB on data and problems, ready to infer solutions. The paper describes an architecture for semantic enablement for SW, SDI; connect interfaces, functions of SDI and SW, and sensor data application program interfaces (APIs) to better manage climate modeling, geohazard, global changes, and other vital areas of attention and action.


Author(s):  
D. Bhattacharya ◽  
M. Painho

The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.


2016 ◽  
Vol 910 (4) ◽  
pp. 18-25
Author(s):  
S.S. Dyshlyuk ◽  
◽  
O.N. Nikolaeva ◽  
L.A. Romashova ◽  
◽  
...  

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 827
Author(s):  
Gasper L. Sechu ◽  
Bertel Nilsson ◽  
Bo V. Iversen ◽  
Mette B. Greve ◽  
Christen D. Børgesen ◽  
...  

River valley bottoms have hydrological, geomorphological, and ecological importance and are buffers for protecting the river from upland nutrient loading coming from agriculture and other sources. They are relatively flat, low-lying areas of the terrain that are adjacent to the river and bound by increasing slopes at the transition to the uplands. These areas have under natural conditions, a groundwater table close to the soil surface. The objective of this paper is to present a stepwise GIS approach for the delineation of river valley bottom within drainage basins and use it to perform a national delineation. We developed a tool that applies a concept called cost distance accumulation with spatial data inputs consisting a river network and slope derived from a digital elevation model. We then used wetlands adjacent to rivers as a guide finding the river valley bottom boundary from the cost distance accumulation. We present results from our tool for the whole country of Denmark carrying out a validation within three selected areas. The results reveal that the tool visually performs well and delineates both confined and unconfined river valleys within the same drainage basin. We use the most common forms of wetlands (meadow and marsh) in Denmark’s river valleys known as Groundwater Dependent Ecosystems (GDE) to validate our river valley bottom delineated areas. Our delineation picks about half to two-thirds of these GDE. However, we expected this since farmers have reclaimed Denmark’s low-lying areas during the last 200 years before the first map of GDE was created. Our tool can be used as a management tool, since it can delineate an area that has been the focus of management actions to protect waterways from upland nutrient pollution.


Sign in / Sign up

Export Citation Format

Share Document