Whale Optimization Algorithm With Wavelet Mutation for the Solution of Optimal Power Flow Problem

Author(s):  
V. Mukherjee ◽  
Aparajita Mukherjee ◽  
Dharmbir Prasad

This chapter proposes whale optimization algorithm (WOA) with wavelet mutation (WOA-WM) for solving optimal power flow (OPF) problem. The proposed WOA-WM algorithm of the present work utilizes wavelet theory to enhance the optimizing performance of basic WOA in exploring the solution space more effectively for getting better solution. Both WOA and the proposed WOA-WM algorithms are tested on four test power systems under different objective functions (that reflects either minimization of fuel cost or that of transmission line loss or improvement of voltage profile) for getting the optimal solutions of the OPF problem. For multi-objective problem formulation, fuel cost, transmission line loss, and voltage deviation are minimized simultaneously. The simulation results are compared to those offered by some recently reported algorithms surfaced in various recent literature. The WOA-WM-based results demonstrate convincing features in solving the OPF problem of the undertaken test power systems.

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2975
Author(s):  
Mohammad H. Nadimi-Shahraki ◽  
Shokooh Taghian ◽  
Seyedali Mirjalili ◽  
Laith Abualigah ◽  
Mohamed Abd Abd Elaziz ◽  
...  

The optimal power flow (OPF) is a vital tool for optimizing the control parameters of a power system by considering the desired objective functions subject to system constraints. Metaheuristic algorithms have been proven to be well-suited for solving complex optimization problems. The whale optimization algorithm (WOA) is one of the well-regarded metaheuristics that is widely used to solve different optimization problems. Despite the use of WOA in different fields of application as OPF, its effectiveness is decreased as the dimension size of the test system is increased. Therefore, in this paper, an effective whale optimization algorithm for solving optimal power flow problems (EWOA-OPF) is proposed. The main goal of this enhancement is to improve the exploration ability and maintain a proper balance between the exploration and exploitation of the canonical WOA. In the proposed algorithm, the movement strategy of whales is enhanced by introducing two new movement strategies: (1) encircling the prey using Levy motion and (2) searching for prey using Brownian motion that cooperate with canonical bubble-net attacking. To validate the proposed EWOA-OPF algorithm, a comparison among six well-known optimization algorithms is established to solve the OPF problem. All algorithms are used to optimize single- and multi-objective functions of the OPF under the system constraints. Standard IEEE 6-bus, IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems are used to evaluate the proposed EWOA-OPF and comparative algorithms for solving the OPF problem in diverse power system scale sizes. The comparison of results proves that the EWOA-OPF is able to solve single- and multi-objective OPF problems with better solutions than other comparative algorithms.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2297 ◽  
Author(s):  
Wadood ◽  
Khurshaid ◽  
Farkoush ◽  
Yu ◽  
Kim ◽  
...  

In power systems protection, the optimal coordination of directional overcurrent relays (DOCRs) is of paramount importance. The coordination of DOCRs in a multi-loop power system is formulated as an optimization problem. The main objective of this paper is to develop the whale optimization algorithm (WOA) for the optimal coordination of DOCRs and minimize the sum of the operating times of all primary relays. The WOA is inspired by the bubble-net hunting strategy of humpback whales which leads toward global minima. The proposed algorithm has been applied to six IEEE test systems including the IEEE three-bus, eight-bus, nine-bus, 14-bus, 15-bus, and 30-bus test systems. Furthermore, the results obtained using the proposed WOA are compared with those obtained by other up-to-date algorithms. The obtained results show the effectiveness of the proposed WOA to minimize the relay operating time for the optimal coordination of DOCRs.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 109289-109300 ◽  
Author(s):  
Mohamed A. M. Shaheen ◽  
Hany M. Hasanien ◽  
S. F. Mekhamer ◽  
Hossam E. A. Talaat

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3239
Author(s):  
Wael S. Hassanein ◽  
Marwa M. Ahmed ◽  
Mohamed I. Mosaad ◽  
A. Abu-Siada

Real-time estimation of transmission line (TL) parameters is essential for proper management of transmission and distribution networks. These parameters can be used to detect incipient faults within the line and hence avoid any potential consequences. While some attempts can be found in the literature to estimate TL parameters, the presented techniques are either complex or impractical. Moreover, none of the presented techniques published in the literature so far can be implemented in real time. This paper presents a cost-effective technique to estimate TL parameters in real time. The proposed technique employs easily accessible voltage and current data measured at both ends of the line. For simplicity, only one quarter of the measured data is sampled and utilized in a developed objective function that is solved using the whale optimization algorithm (WOA) to estimate the TL parameters. The proposed objective function comprises the sum of square errors of the measured data and the corresponding estimated values. The robustness of the proposed technique is tested on a simple two-bus and the IEEE 14-bus systems. The impact of uncertainties in the measured data including magnitude, phase, and communication delay on the performance of the proposed estimation technique is also investigated. Results reveal the effectiveness of the proposed method that can be implemented in real time to detect any incipient variations in the TL parameters due to abnormal or fault events.


2020 ◽  
Vol 11 (4) ◽  
pp. 61-86
Author(s):  
Barun Mandal ◽  
Provas Kumar Roy

This article introduces a grasshopper optimization algorithm (GOA) to efficiently prove its superiority for solving different objectives of optimal power flow (OPF) based on a mixture thermal power plant that incorporates uncertain wind energy (WE) sources. Many practical constraints of generators, valve point effect, multiple fuels, and the various scenarios incorporating several configurations of WEs are considered for both singles along with multi-objectives for the OPF issue. Within the article, the considered method is verified on two common bus experiment systems, i.e. IEEE 30-bus as well as the IEEE 57-bus. Here, the fuel amount minimization and emission minimization are studied as the primary purposes of a GOA-based OPF problem. However, the proposed algorithm yields a reasonable conclusion about the better performance of the wind turbine. Computational results express the effectiveness of the proposed GOA approach for the secure and financially viable of the power system under various uncertainties. The comparison is tabulated with the existing algorithms to provide superior results.


Sign in / Sign up

Export Citation Format

Share Document