Granular Computing

Author(s):  
Georg Peters

It is well accepted that in many real life situations information is not certain and precise but rather uncertain or imprecise. To describe uncertainty probability theory emerged in the 17th and 18th century. Bernoulli, Laplace and Pascal are considered to be the fathers of probability theory. Today probability can still be considered as the prevalent theory to describe uncertainty. However, in the year 1965 Zadeh seemed to have challenged probability theory by introducing fuzzy sets as a theory dealing with uncertainty (Zadeh, 1965). Since then it has been discussed whether probability and fuzzy set theory are complementary or rather competitive (Zadeh, 1995). Sometimes fuzzy sets theory is even considered as a subset of probability theory and therefore dispensable. Although the discussion on the relationship of probability and fuzziness seems to have lost the intensity of its early years it is still continuing today. However, fuzzy set theory has established itself as a central approach to tackle uncertainty. For a discussion on the relationship of probability and fuzziness the reader is referred to e.g. Dubois, Prade (1993), Ross et al. (2002) or Zadeh (1995). In the meantime further ideas how to deal with uncertainty have been suggested. For example, Pawlak introduced rough sets in the beginning of the eighties of the last century (Pawlak, 1982), a theory that has risen increasing attentions in the last years. For a comparison of probability, fuzzy sets and rough sets the reader is referred to Lin (2002). Presently research is conducted to develop a Generalized Theory of Uncertainty (GTU) as a framework for any kind of uncertainty whether it is based on probability, fuzziness besides others (Zadeh, 2005). Cornerstones in this theory are the concepts of information granularity (Zadeh, 1979) and generalized constraints (Zadeh, 1986). In this context the term Granular Computing was first suggested by Lin (1998a, 1998b), however it still lacks of a unique and well accepted definition. So, for example, Zadeh (2006a) colorfully calls granular computing “ballpark computing” or more precisely “a mode of computation in which the objects of computation are generalized constraints”.

Author(s):  
Renáta Bartková ◽  
Beloslav Riečan ◽  
Anna Tirpáková

Similarly as the Kolmogorov probability theory in the first half of the 20th century, the Zadeh fuzzy set theory played a significant role in the second half of the 20th century. In this chapter we present probability theory on intuitionisic fuzzy sets as well as probability spaces on multivalued logic.


Author(s):  
XIAOYU GAO ◽  
Q. S. GAO ◽  
Y. HU ◽  
L. LI

In this paper, the reasons for the shortcoming of Zadeh's fuzzy set theory — it cannot correctly reflect different kinds of fuzzy phenomenon in the natural world — are discussed. In addition, the proof of the error of Zadeh's fuzzy set theory — it incorrectly defined the set complement that cannot exist in Zadeh's fuzzy set theory — is proposed. This error of Zadeh's fuzzy set theory causes confusion in thinking, logic and conception. It causes the seriously mistaken belief that logics of fuzzy sets necessarily go against classical and normal thinking, logic and conception. Two new fuzzy set theories, C-fuzzy set theory and probability-like fuzzy set theory, the N-fuzzy set theory, are proposed. The two are equivalent, and both overcome the error and shortcoming of Zadeh's fuzzy set theory, and they are consistent with normal, natural and classical thinking, logic and concepts. The similarities of N-fuzzy set theory with probability theory are also examined.


2020 ◽  
Vol 499 (1) ◽  
pp. L31-L35
Author(s):  
Biswajit Pandey

ABSTRACT Red and blue galaxies are traditionally classified using some specific cuts in colour or other galaxy properties, which are supported by empirical arguments. The vagueness associated with such cuts are likely to introduce a significant contamination in these samples. Fuzzy sets are vague boundary sets that can efficiently capture the classification uncertainty in the absence of any precise boundary. We propose a method for classification of galaxies according to their colours using fuzzy set theory. We use data from the Sloan Digital Sky Survey (SDSS) to construct a fuzzy set for red galaxies with its members having different degrees of ‘redness’. We show that the fuzzy sets for the blue and green galaxies can be obtained from it using different fuzzy operations. We also explore the possibility of using fuzzy relation to study the relationship between different galaxy properties and discuss its strengths and limitations.


Author(s):  
Radim Bělohlávek ◽  
Joseph W. Dauben ◽  
George J. Klir

The chapter begins by introducing the important and useful distinction between the research agendas of fuzzy logic in the narrow and the broad senses. The chapter deals with the latter agenda, whose ultimate goal is to employ intuitive fuzzy set theory for emulating commonsense human reasoning in natural language and other unique capabilities of human beings. Restricting to standard fuzzy sets, whose membership degrees are real numbers in the unit interval [0,1], the chapter describes how this broad agenda has become increasingly specific via the gradual development of standard fuzzy set theory and the associated fuzzy logic. An overview of currently recognized nonstandard fuzzy sets, which open various new directions in fuzzy logic, is presented in the last section of this chapter.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 432 ◽  
Author(s):  
Vilém Novák

In this paper, we will visit Rough Set Theory and the Alternative Set Theory (AST) and elaborate a few selected concepts of them using the means of higher-order fuzzy logic (this is usually called Fuzzy Type Theory). We will show that the basic notions of rough set theory have already been included in AST. Using fuzzy type theory, we generalize basic concepts of rough set theory and the topological concepts of AST to become the concepts of the fuzzy set theory. We will give mostly syntactic proofs of the main properties and relations among all the considered concepts, thus showing that they are universally valid.


Sign in / Sign up

Export Citation Format

Share Document