RFID

Author(s):  
Eric Puffenbarger ◽  
Faye P. Teer ◽  
S. E. Kruck

Educators have an ongoing challenge as they strive to stay up-to-date with new technology. One emerging technology, RFID (radio frequency identification) tags, has the potential to impact information systems in businesses as well as in our lives. Educators responsible for planning curriculum need to consider how to incorporate topics pertaining to RFID technology into a wide variety of technology courses. Therefore, one purpose of this manuscript is to give curriculum planners and teachers a summary of RFID by: presenting an overview of RFID technology; exploring RFID limitations and possible solutions; and examining the future outlook of RFID. An additional purpose further assists educators in considering how to incorporate this new course topic into the curriculum by providing some teaching resources, objectives and suggestions pertaining to RFID.

2014 ◽  
Vol 718 ◽  
pp. 143-149 ◽  
Author(s):  
Michal Balog ◽  
Erik Szilágyi ◽  
Dávid Marton

Our aim is to deal with the application of RFID technology in real conditions. Increasing interest in Radio Frequency Identification and related numerous applications for increasing automation in information systems has become an area of ​​interest public transportation applications. The reason for the application of RFID technology is tracking entrance/exit of vehicles to or from the parking area. The main expected benefits arising out of the introduction of this system is considered to maximize efficiency in payments to external carriers parking operator for services related to the use of the bus park for a period of time.


Author(s):  
David C. Wyld

We are in the midst of what may become one of the true technological transformations of our time. RFID (radio frequency identification) is by no means a new technology. RFID is fundamentally based on the study of electromagnetic waves and radio, pioneered in the 19th century work of Faraday, Maxwell, and Marconi. The idea of using radio frequencies to reflect waves from objects dates back as far as 1886 to experiments conducted by Hertz. Radar was invented in 1922, and its practical applications date back to World War II, when the British used the IFF (Identify Friend or Foe) system to identify enemy aircraft (Landt, 2001). Stockman (1948) laid out the basic concepts for RFID. However, it would take decades of development before RFID technology would become a reality. Since 2000, significant improvements in functionality, decreases in both size and costs, and agreements on communication standards have combined to make RFID technology viable for commercial and governmental purposes. Today, RFID is positioned as an alternative way to identify objects with the ubiquitous bar code.


Author(s):  
David Wyld

We are in the midst of what may become one of the true technological transformations of our time. RFID (radio frequency identification) is by no means a new technology. RFID is fundamentally based on the study of electromagnetic waves and radio, pioneered in the 19th century work of Faraday, Maxwell, and Marconi. The idea of using radio frequencies to reflect waves from objects dates back as far as 1886 to experiments conducted by Hertz. Radar was invented in 1922, and its practical applications date back to World War II, when the British used the IFF (Identify Friend or Foe) system to identify enemy aircraft (Landt, 2001). Stockman (1948) laid out the basic concepts for RFID. However, it would take decades of development before RFID technology would become a reality. Since 2000, significant improvements in functionality, decreases in both size and costs, and agreements on communication standards have combined to make RFID technology viable for commercial and governmental purposes. Today, RFID is positioned as an alternative way to identify objects with the ubiquitous bar code.


Author(s):  
Les Pang ◽  
Vanessa Morgan-Morris ◽  
Angela Howell

Radio Frequency Identification (RFID) is a significant emerging technology that enables the automation of numerous applications globally. Professions, businesses and industries have integrated this technology into their procedures and it has resulted in great advances in the accuracy of data, operational efficiencies, logistical enhancements and other process improvements. This chapter discusses the application of RFID technology to support the needs and requirements within the realm of urban planning. First, the historic and technical background behind RFID is reviewed. Illustrative examples of its use are presented. Next, the technology’s potential is explored in terms of a practical tool for urban planners. Consequently, issues and challenges associated with RFID are identified and considerations to be made when applying the technology are offered. Finally, the outlook for RFID technology is examined as an instrument in urban development and the expected exponential growth of the technology is discussed.


2008 ◽  
Vol 3 (1) ◽  
pp. 55-70
Author(s):  
Dharmaraj Veeramani ◽  
Jenny Tang ◽  
Alfonso Gutierrez

Radio frequency identification (RFID) is a rapidly evolving technology for automatic identification and data capture of products. One of the barriers to the adoption of RFID by organizations is difficulty in assessing the potential return on investment (ROI). Much of the research and analyses to date of ROI in implementing RFID technology have focused on the benefits to the retailer. There is a lack of a good understanding of the impact of RFID at upper echelons of the supply chain. In this paper, we present a framework and models for assessing the value of RFID implementation by tier-one suppliers to major retailers. We also discuss our real-life application of this framework to one of Wal-Mart’s top 100 suppliers


2019 ◽  
Vol 8 (4) ◽  
pp. 1743-1745

Vehicular traffic can hardly escape the list of critical problems in the world that demand to be resolved at the earliest. Attempting to eradicate the factors that led to this menace is a process too long for the current critical situation to wait for and stay unattended. Considering the serious consequences that ensue as a result of traffic jams, some solution that can bring an expeditious remedy needs to be found in order to handle the current situation. And this paper is aimed at proposing one such solution which can considerably ameliorate the degree of the mayhem that is prevailing, using Radio Frequency IDentification (RFID) technology.


2020 ◽  
Vol 20 (2) ◽  
pp. 127-132
Author(s):  
Namjin Cho ◽  
Dongsu Im ◽  
Jungdon Kwon ◽  
Teayeon Cho ◽  
Junglim Lee

Nuclear power plants store and use flammable gases and liquids and consequently risk explosions. Therefore, nuclear plants employ explosion-proof equipment; however, this equipment is not always sufficiently maintained. This lack of maintenance can affect the safety-related equipment intended to shut down the reactor, because the explosion-proof equipment itself can act as an ignition source. Radio-frequency identification (RFID) technology should be explored as a tool to improve both the convenience and efficiency of maintenance. We analyzed and compared explosion-proof RFID technology that can be used in nuclear power plants.


Sign in / Sign up

Export Citation Format

Share Document