A Multi-Agent Modeling Approach to Simulate Dynamic Activity-Travel Patterns

Author(s):  
Qi Han ◽  
Theo Arentze ◽  
Harry Timmermans ◽  
Davy Janssens ◽  
Geert Wets

Contributing to the recent interest in the dynamics of activity-travel patterns, this chapter discusses a framework of an agent-based modeling approach focusing on the dynamic formation of (location) choice sets. Individual travelers are represented as agents, each with their cognition of the environment, habits, and activity-travel patterns. Agents learn through their experiences with the transport systems, changes in the environments and from their social network. Conceptually, agents are assumed to have an aspiration level associated with choice sets that in combination with evaluation results determine whether the agent will start exploring or persist in habitual behavior; an activation level of each (location) alternative that determines whether or not the alternative is included in the choice set in the next time step, and an expected (utility) function to evaluate each (location) alternative given current beliefs. Each of these elements is dynamic. Based on principles of reinforcement learning, Bayesian learning, and social comparison theories, the framework specifies functions for experience-based learning, extended and integrated with social learning.

Author(s):  
Satoshi Kurihara ◽  
◽  
Ryo Ogawa ◽  
Kosuke Shinoda ◽  
Hirohiko Suwa ◽  
...  

Traffic congestion is a serious problem for people living in urban areas, causing social problems such as time loss, economical loss, and environmental pollution. Therefore, we propose a multi-agent-based traffic light control framework for intelligent transport systems. Achieving consistent traffic flow necessitates the real-time adaptive coordination of traffic lights; however, many conventional approaches are of the centralized control type and do not have this feature. Our multi-agent-based control framework combines both indirect and direct coordination. Reaction to dynamic traffic flow is attained by indirect coordination, whereas green-wave formation, which is a systematic traffic flow control strategy involving several traffic lights, is attained by direct coordination. We present the detailed mechanism of our framework and verify its effectiveness using simulation to carry out a comparative evaluation.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sung-Jung Wang ◽  
S. K. Jason Chang

Autonomous buses are becoming increasingly popular and have been widely developed in many countries. However, autonomous buses must learn to navigate the city efficiently to be integrated into public transport systems. Efficient operation of these buses can be achieved by intelligent agents through reinforcement learning. In this study, we investigate the autonomous bus fleet control problem, which appears noisy to the agents owing to random arrivals and incomplete observation of the environment. We propose a multi-agent reinforcement learning method combined with an advanced policy gradient algorithm for this large-scale dynamic optimization problem. An agent-based simulation platform was developed to model the dynamic system of a fixed stop/station loop route, autonomous bus fleet, and passengers. This platform was also applied to assess the performance of the proposed algorithm. The experimental results indicate that the developed algorithm outperforms other reinforcement learning methods in the multi-agent domain. The simulation results also reveal the effectiveness of our proposed algorithm in outperforming the existing scheduled bus system in terms of the bus fleet size and passenger wait times for bus routes with comparatively lesser number of passengers.


2013 ◽  
Vol 5 (4) ◽  
pp. 184-200 ◽  
Author(s):  
Sehnaz Cenani ◽  
Theo A Arentze ◽  
Harry J P Timmermans

2013 ◽  
Vol 133 (9) ◽  
pp. 1652-1657 ◽  
Author(s):  
Takeshi Nagata ◽  
Kosuke Kato ◽  
Masahiro Utatani ◽  
Yuji Ueda ◽  
Kazuya Okamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document