Cooperative Broadcast in Large-Scale Wireless Networks

Author(s):  
Birsen Sirkeci-Mergen ◽  
Anna Scaglione ◽  
Michael Gastpar

This chapter studies the cooperative broadcasting in wireless networks. We especially focus on multistage cooperative broadcasting in which the message from a source node is relayed by multiple groups of cooperating nodes. Interestingly, group transmissions become beneficial in the case of broadcasting as opposed to the case in traditional networks where receptions from different transmitters are considered as collision and disregarded. Different aspects of multistage cooperative broadcasting are analyzed in the chapter: (i) coverage behavior; (ii) power efficiency; (ii) error propagation; (iv) maximum communication rate. Whenever possible, performance is compared with multihop broadcasting where transmissions are relayed by a single node at each hop. We consider a large-scale network with many nodes distributed randomly in a given area. In order to analyze such networks, an important methodology, the continuum limit, is introduced. In the continuum limit, random networks are approximated by their dense limits under sum relay power constraint. This method allows us to obtain analytical results for the analysis of cooperative multistage broadcasting.

2012 ◽  
pp. 604-623
Author(s):  
Birsen Sirkeci-Mergen ◽  
Anna Scaglione ◽  
Michael Gastpar

This chapter studies the cooperative broadcasting in wireless networks. We especially focus on multistage cooperative broadcasting in which the message from a source node is relayed by multiple groups of cooperating nodes. Interestingly, group transmissions become beneficial in the case of broadcasting as opposed to the case in traditional networks where receptions from different transmitters are considered as collision and disregarded. Different aspects of multistage cooperative broadcasting are analyzed in the chapter: (i) coverage behavior; (ii) power efficiency; (ii) error propagation; (iv) maximum communication rate. Whenever possible, performance is compared with multihop broadcasting where transmissions are relayed by a single node at each hop. We consider a large-scale network with many nodes distributed randomly in a given area. In order to analyze such networks, an important methodology, the continuum limit, is introduced. In the continuum limit, random networks are approximated by their dense limits under sum relay power constraint. This method allows us to obtain analytical results for the analysis of cooperative multistage broadcasting.


MIS Quarterly ◽  
2016 ◽  
Vol 40 (4) ◽  
pp. 849-868 ◽  
Author(s):  
Kunpeng Zhang ◽  
◽  
Siddhartha Bhattacharyya ◽  
Sudha Ram ◽  
◽  
...  

2014 ◽  
Vol 26 (7) ◽  
pp. 1377-1389 ◽  
Author(s):  
Bo-Cheng Kuo ◽  
Mark G. Stokes ◽  
Alexandra M. Murray ◽  
Anna Christina Nobre

In the current study, we tested whether representations in visual STM (VSTM) can be biased via top–down attentional modulation of visual activity in retinotopically specific locations. We manipulated attention using retrospective cues presented during the retention interval of a VSTM task. Retrospective cues triggered activity in a large-scale network implicated in attentional control and led to retinotopically specific modulation of activity in early visual areas V1–V4. Importantly, shifts of attention during VSTM maintenance were associated with changes in functional connectivity between pFC and retinotopic regions within V4. Our findings provide new insights into top–down control mechanisms that modulate VSTM representations for flexible and goal-directed maintenance of the most relevant memoranda.


Sign in / Sign up

Export Citation Format

Share Document