Introduction to ITS and NTCIP

Author(s):  
Da-Jie Lin ◽  
Chyi-Ren Dow

Intelligent Transportation Systems (ITS) combines high technology and improvements in information systems, communication, sensors, and relevant mathematical methods with the conventional world of surface transportation infrastructure to increase the capacity of transportation systems and to improve the level of services. There are four major goals of ITS, including safety, environmental protection, efficiency, and economy. NTCIP (NTCIP Standard 9001, 2002; DISA et al., 1997) is a set of communications protocols and data definition standards designed for various needs of ITS services and applications. The key goals of the NTCIP open-standards effort are interoperability and interchangeability. Interoperability refers to the ability for multiple devices to work together as a single system and interchangeability refers to the ability to use multiple brands of a device on the same communications channel. Accompanying the social and economic development, traffic congestion and delay have become major issues in most areas around the world. How to use readily available technologies to increase the capacity of transportation systems and to improve the level of service has become one of major solutions to solve transportation problems that people are facing. This is the motivation of Intelligent Transportation Systems development. NTCIP is a set of communications protocols and data definition standards designed for various needs of ITS services and applications. These standards are intended to handle these needs in the two areas: Center-to-Field (C2F) and Center-to-Center (C2C) communications.

Author(s):  
S. Gregory Hatcher ◽  
James A. Bunch ◽  
Donald L. Roberts

The issues associated with incorporating intelligent transportation systems (ITS) strategies into alternatives analysis planning studies such as major investment studies (MIS), which have emerged since the Intermodal Surface Transportation Efficiency Act was passed in 1991, are discussed. The challenges and implications of including ITS in three of the key steps of the MIS process—problem definition, alternative definition, and analysis—are examined. As context for the specific issues addressed, a case study is presented on incorporating ITS into a corridor planning process that is being conducted using Seattle data. Critical to incorporating ITS elements within an MIS process is developing a problem statement, goals and objectives, and measures of effectiveness that are sensitive to ITS and other operational improvements for the corridor or subarea under study. Traditional MIS processes have focused on facility/service improvements and on average conditions and demand. ITS strategies, on the other hand, aim at improving ( a) operations; ( b) response to nonrecurrent conditions; and ( c) providing better information. To be able to address ITS strategies, the analysis approach used in an MIS should be sensitive to these issues. An illustration of how ITS strategies are being incorporated and evaluated in the Seattle (MIS-like) case study concludes the discussion.


2020 ◽  
Vol 6 (2) ◽  
pp. 54-73
Author(s):  
Erma Suryani ◽  
◽  
Rully Agus Hendrawan ◽  
Fizar Syafa’at ◽  
Alifia Az-Zahra ◽  
...  

Author(s):  
Sundaravalli Narayanaswami

“Intelligent Transportation systems” is what everyone wants to know about, and about which very little is available as know-how. ITS technologies and monitoring systems are quite popular and reasonably well deployed in developed countries, particularly the roadways and airways. ITS holds a greater promise than ever before, as both availability of niche technologies and demand for more efficient transportation systems have increased multi-fold in recent years. Of late, there are huge railway projects all over the world that spans through several techniques, such as light / heavy rails, monorails etc. Apart from the social benefits that can be envisaged, these projects are genuine examples of public-private partnerships along with global business operations. Many of these projects demonstrate a classy trend of moving towards automation of operations of very large scales. Few agent architectures are discussed in brief in this chapter.


2007 ◽  
Vol 13 (3) ◽  
pp. 627-636
Author(s):  
Edna Mrnjavac ◽  
Robert Marsanić

The rapid growth and development of motorisation combined with relatively small investments made to improving transportation infrastructure in cities, as well as in tourism destinations, has led to serious problems in the unobstructed movement of vehicles in public traffic areas. Traffic congestion on roadways, in ferryboat ports and at state borders during the summer months and year-round lines of cars going to or returning from work are a regular presence in traffic in most urban and tourism destinations in Croatia, as well as in the rest of Europe. Intelligent transportation systems (ITS) can be implemented in urban and tourism centres, which, for example, have no opportunity for increasing the capacity of their traffic networks by constructing new, or expanding existing, transportation infrastructure, and no opportunity for increasing parking capacities. The only solution would be to optimise traffic networking by introducing intelligent technologies. Intelligent transportation systems and services represent a coupling of information and telecommunication technologies with transportation means and infrastructure to ensure greater efficiency in the mobility of people and goods. ITS implementation helps to provide better information to motorists and travellers (tourists); improve traffic and tourist flows, cargo transportation, public passenger-transportation; facilitate the work of emergency services; enable electronic traffic-related payments; enhance the security of people in road traffic; and monitor weather conditions and the environment. To motorists the system provides guidance to roads on which traffic is less intense, guidance to available parking spaces, and guidance, for example, to a good restaurant or interesting tourist attraction. his paper focuses, in particular, on ITS application in city and tourism destinations in connection with parking problems. Guiding vehicles to the closest vacant parking space helps to reduce traffic congestion, reduce the amount of time lost in searching and increase the occupancy rate of car-parks


Author(s):  
W. Bradley Fain

Intelligent Transportation Systems (ITS) can reduce traffic congestion by displaying congestion-related delay information on roadside variable message signs or in-vehicle displays. Message format and content may have a significant impact on the percentage of drivers who decide to make a route diversion. In this study, the effect of various traffic information message types on driver routing decisions was evaluated. Results suggest that messages including both an advisory and a descriptive component promote situation awareness and rapid decision making, both of which are critical for this application.


2014 ◽  
Vol 543-547 ◽  
pp. 1022-1025
Author(s):  
Wei Zhao ◽  
Wen Juan Huang ◽  
Jian Yu Gao ◽  
Lin Zhang

With the social development and technological progress, automatic detecting and recording system of cars for violation of traffic signal, as an important part of intelligent transportation systems, is entering the stage of full implementation. For the dependence on external systems, inconvenience of construction and maintenance, and poor flexibility of the traditional automatic detecting and recording system based on magnetic induction coil, the introduction of video-based detecting and recording system of cars for violation of traffic signal is present. In the video detection, the detection of illegal vehicles is completed by virtual coil detection algorithm based on regional changes. This system is simple, requiring only the camera installed in intersection to capture video, and junctions control terminal. At the same time, its process is easy to implement, and has a huge cost-effective.


2018 ◽  
pp. 1740-1757
Author(s):  
Sundaravalli Narayanaswami

“Intelligent Transportation systems” is what everyone wants to know about, and about which very little is available as know-how. ITS technologies and monitoring systems are quite popular and reasonably well deployed in developed countries, particularly the roadways and airways. ITS holds a greater promise than ever before, as both availability of niche technologies and demand for more efficient transportation systems have increased multi-fold in recent years. Of late, there are huge railway projects all over the world that spans through several techniques, such as light / heavy rails, monorails etc. Apart from the social benefits that can be envisaged, these projects are genuine examples of public-private partnerships along with global business operations. Many of these projects demonstrate a classy trend of moving towards automation of operations of very large scales. Few agent architectures are discussed in brief in this chapter.


Author(s):  
Sundaravalli Narayanaswami

“Intelligent Transportation systems” is what everyone wants to know about, and about which very little is available as know-how. ITS technologies and monitoring systems are quite popular and reasonably well deployed in developed countries, particularly the roadways and airways. ITS holds a greater promise than ever before, as both availability of niche technologies and demand for more efficient transportation systems have increased multi-fold in recent years. Of late, there are huge railway projects all over the world that spans through several techniques, such as light / heavy rails, monorails etc. Apart from the social benefits that can be envisaged, these projects are genuine examples of public-private partnerships along with global business operations. Many of these projects demonstrate a classy trend of moving towards automation of operations of very large scales. Few agent architectures are discussed in brief in this chapter.


Sign in / Sign up

Export Citation Format

Share Document