Artificial Neural Network for PWM Rectifier Direct Power Control and DC Voltage Control

2022 ◽  
pp. 440-470
Author(s):  
Arezki Fekik ◽  
Hakim Denoun ◽  
Ahmad Taher Azar ◽  
Mustapha Zaouia ◽  
Nabil Benyahia ◽  
...  

In this chapter, a new technique has been proposed for reducing the harmonic content of a three-phase PWM rectifier connected to the networks with a unit power factor and also providing decoupled control of the active and reactive instantaneous power. This technique called direct power control (DPC) is based on artificial neural network (ANN) controller, without line voltage sensors. The control technique is based on well-known direct torque control (DTC) ideas for the induction motor, which is applied to eliminate the harmonic of the line current and compensate for the reactive power. The main idea of this control is based on active and reactive power control loops. The DC voltage capacitor is regulated by the ANN controller to keep it constant and also provides a stable active power exchange. The simulation results are very satisfactory in the terms of stability and total harmonic distortion (THD) of the line current and the unit power factor.

Author(s):  
Arezki Fekik ◽  
Hakim Denoun ◽  
Ahmad Taher Azar ◽  
Mustapha Zaouia ◽  
Nabil Benyahia ◽  
...  

In this chapter, a new technique has been proposed for reducing the harmonic content of a three-phase PWM rectifier connected to the networks with a unit power factor and also providing decoupled control of the active and reactive instantaneous power. This technique called direct power control (DPC) is based on artificial neural network (ANN) controller, without line voltage sensors. The control technique is based on well-known direct torque control (DTC) ideas for the induction motor, which is applied to eliminate the harmonic of the line current and compensate for the reactive power. The main idea of this control is based on active and reactive power control loops. The DC voltage capacitor is regulated by the ANN controller to keep it constant and also provides a stable active power exchange. The simulation results are very satisfactory in the terms of stability and total harmonic distortion (THD) of the line current and the unit power factor.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Abolfazl Halvaei Niasar ◽  
Hossein Rahimi Khoei

This paper proposes the design of sensorless induction motor drive based on direct power control (DPC) technique. It is shown that DPC technique enjoys all advantages of pervious methods such as fast dynamic and ease of implementation, without having their problems. To reduce the cost of drive and enhance the reliability, an effective sensorless strategy based on artificial neural network (ANN) is developed to estimate rotor’s position and speed of induction motor. Developed sensorless scheme is a new model reference adaptive system (MRAS) speed observer for direct power control induction motor drives. The proposed MRAS speed observer uses the current model as an adaptive model. The neural network has been then designed and trained online by employing a back propagation network (BPN) algorithm. The estimator was designed and simulated in Simulink. Some simulations are carried out for the closed-loop speed control systems under various load conditions to verify the proposed methods. Simulation results confirm the performance of ANN based sensorless DPC induction motor drive in various conditions.


Author(s):  
Sundarapandian Vaidyanathan ◽  
Mohamed Lamine Hamida ◽  
Mustapha Zaouia ◽  
Hakim Denoun ◽  
Arezki Fekik

Author(s):  
Arezki Fekik ◽  
Hakim Denoun ◽  
Mustapha Zaouia ◽  
Mohamed Lamine Hamida ◽  
Sundarapandian Vaidyanathan

Author(s):  
Azziddin M. Razali ◽  
Nor Azizah Yusoff ◽  
Kasrul Abdul Karim ◽  
Auzani Jidin ◽  
Tole Sutikno

This paper presents a comprehensive and systematic approach in developing a new switching look-up table for direct power control (DPC) strategy applied to the three-phase grid connected three-level neutral-point clamped (3L-NPC) pulse width modulated (PWM) rectifier. The term of PWM rectifier used in this paper is also known as AC-DC converter. The approach provides detailed information regarding the effects of each multilevel converter space vector to the distribution of input active and reactive power in the converter system. Thus, the most optimal converter space vectors are able to be selected by the switching look-up table, allowing smooth control of the active and reactive powers for each sector. In addition, the proposed DPC utilizes an NPC capacitor balanced strategy to enhance the performance of front-end AC-DC converter during load and supply voltage disturbances. The steady state as well as the dynamic performances of the proposed DPC are presented and analyzed by using MATLAB/Simulink software. The results show that the AC-DC converter utilizing the new look-up table is able to produce almost sinusoidal line currents with lower current total harmonic distortion, unity power factor operation, adjustable DC-link output voltage and good dynamic response during load disturbance.


Author(s):  
A. Rahab ◽  
H Benalla ◽  
F Senani

In this paper, improved sonsorless direct power control (DPC) of three-phase rectifiers is presented. The new system are based on virtual flux (VF) and notch filter using Second Order Generalized Integrator frequency located loop SOGI-FLL estimator. In order to improve the VF-DPC performance of PWM rectifier, an improved observation method of virtual flux-linkage is proposed. To avoid the relevant problems of pure integrator, and to achieve the accurate observation of the grid voltage’s phase, (SOGI-FLL) are used to displace the pure integrator. Theoretical principles of this method are presented and discussed. These strategies are also investigated under disturbed grid voltage. A theoretical analysis of active and reactive power under a non-ideal source is clearly demonstrated. In order to calculate the compensated powers, the extraction of positive, negative, and harmonic sequences of voltage and current is needed and a multiple dual SOGI-FLL method is used for rapid and accurate extraction. It is shown that the VFDPC with integrating notch filter exhibits several advantages, particularly providing small ripple of DC-link voltage and sinusoidal line current when the supply voltage is not ideal.


Sign in / Sign up

Export Citation Format

Share Document