On the Approximate Solution of Caputo-Riesz-Feller Fractional Diffusion Equation

Author(s):  
Samir Shamseldeen ◽  
Ahmed Elsaid ◽  
Seham Madkour

In this work, a space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative is introduced. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. Also, a very useful Riesz-Feller fractional derivative is proved; the property is essential in applying iterative methods specially for complex exponential and/or real trigonometric functions. The analytic series solution of the problem is obtained via the optimal homotopy analysis method (OHAM). Numerical simulations are presented to validate the method and to highlight the effect of changing the fractional derivative parameters on the behavior of the obtained solutions. The results in this work are originally extracted from the author's work.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
A. Elsaid ◽  
S. Shamseldeen ◽  
S. Madkour

We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM). Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.


2013 ◽  
Vol 10 (02) ◽  
pp. 1341001 ◽  
Author(s):  
LEEVAN LING ◽  
MASAHIRO YAMAMOTO

We consider the solutions of a space–time fractional diffusion equation on the interval [-1, 1]. The equation is obtained from the standard diffusion equation by replacing the second-order space derivative by a Riemann–Liouville fractional derivative of order between one and two, and the first-order time derivative by a Caputo fractional derivative of order between zero and one. As the fundamental solution of this fractional equation is unknown (if exists), an eigenfunction approach is applied to obtain approximate fundamental solutions which are then used to solve the space–time fractional diffusion equation with initial and boundary values. Numerical results are presented to demonstrate the effectiveness of the proposed method in long time simulations.


Author(s):  
Sabrina Roscani ◽  
Eduardo Marcus

AbstractTwo Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition T x(0,t) = q/t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α ↗ 1 recovering the heat equation with its respective Stefan’s condition.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 695-699 ◽  
Author(s):  
Sheng-Ping Yan ◽  
Wei-Ping Zhong ◽  
Xiao-Jun Yang

In this paper, we suggest the series expansion method for finding the series solution for the time-fractional diffusion equation involving Caputo fractional derivative.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Y. J. Choi ◽  
S. K. Chung

We consider finite element Galerkin solutions for the space fractional diffusion equation with a nonlinear source term. Existence, stability, and order of convergence of approximate solutions for the backward Euler fully discrete scheme have been discussed as well as for the semidiscrete scheme. The analytical convergent orders are obtained asO(k+hγ˜), whereγ˜is a constant depending on the order of fractional derivative. Numerical computations are presented, which confirm the theoretical results when the equation has a linear source term. When the equation has a nonlinear source term, numerical results show that the diffusivity depends on the order of fractional derivative as we expect.


2021 ◽  
Vol 2 (1) ◽  
pp. 60-75
Author(s):  
Ndolane Sene

In this paper, we propose the approximate solution of the fractional diffusion equation described by a non-singular fractional derivative. We use the Atangana-Baleanu-Caputo fractional derivative in our studies. The integral balance methods as the heat balance integral method introduced by Goodman and the double integral method developed by Hristov have been used for getting the approximate solution. In this paper, the existence and uniqueness of the solution of the fractional diffusion equation have been provided. We analyze the impact of the fractional operator in the diffusion process. We represent graphically the approximate solution of the fractional diffusion equation.


Sign in / Sign up

Export Citation Format

Share Document