Data Security and Privacy-Preserving in Edge Computing

Author(s):  
Manoranjini J. ◽  
Anbuchelian S.

The rapid massive growth of IoT and the explosive increase in the data used and created in the edge networks led to several complications in the cloud technology. Edge computing is an emerging technology which is ensuring itself as a promising technology. The authors mainly focus on the security and privacy issues and their solutions. There are a lot of important features which make edge computing the most promising technology. In this chapter, they emphasize the security and privacy issues. They also discuss various architectures that enable us to ensure safe technologies and also provide an analysis on various designs that enable strong security models. Next, they make a detailed study on different cryptographic techniques and trust management systems. This study helps us to identify the pros and cons that led us to promising implementations of edge computing in the current scenario. At the end of the chapter, the authors discuss on various open research areas which could be the thrust areas for the next era.

2019 ◽  
Vol 160 ◽  
pp. 734-739 ◽  
Author(s):  
Shalin Parikh ◽  
Dharmin Dave ◽  
Reema Patel ◽  
Nishant Doshi

Author(s):  
Atiqur Rahman ◽  
Guangfu Wu ◽  
Ali Md Liton

Nowadays, the masonry for environment-friendly and protected network structure designs, for example, the Internet of Things and gigantic data analytics are increasing at a faster pace compared to an earlier state. Mobile edge computing for an Internet of Things widget is information processing that is achieved at or close to the collectors of information in an Internet of Things system. Herein, we are proposing to temporarily evaluation the concepts, features, protection, and privacy applications of Internet of Things authorized mobile edge computing with its data protection view in our data-driven globe. We focus on illuminating one of kind components that need to be taken into consideration whilst creating a scalable, consistent, impenetrable and disseminated mobile edge computing structure. We also sum up the fundamental ideas regarding security threat alleviation strategies. After that, we walk around the existing challenges and opportunities in the area of mobile edge computing. In conclusion, we analyze a case study, in which a security protection mechanism can be hardened to lift out everyday jobs.


Author(s):  
Abdulmalik Alwarafy ◽  
Khaled A. Al-Thelaya ◽  
Mohamed Abdallah ◽  
Jens Schneider ◽  
Mounir Hamdi

Author(s):  
Indra Priyadharshini S. ◽  
Pradheeba Ulaganathan ◽  
Vigilson Prem M. ◽  
Yuvaraj B. R.

The evolution in computing strategies has shown wonders in reducing the reachability issue among different end devices. After centralized approaches, decentralized approaches started to take action, but with the latency in data pre-processing, computing very simple requests was the same as for the larger computations. Now it's time to have a simple decentralized environment called edge that is created very near to the end device. This makes edge location friendly and time friendly to different kinds of devices like smart, sensor, grid, etc. In this chapter, some of the serious and non-discussed security issues and privacy issues available on edge are explained neatly, and for a few of the problems, some solutions are also recommended. At last, a separate case study of edge computing challenges in healthcare is also explored, and solutions to those issues concerning that domain are shown.


2020 ◽  
Vol 2020 ◽  
pp. 1-25 ◽  
Author(s):  
Muhammad Sameer Sheikh ◽  
Jun Liang ◽  
Wensong Wang

Vehicular networks are becoming a prominent research field in the intelligent transportation system (ITS) due to the nature and characteristics of providing high-level road safety and optimized traffic management. Vehicles are equipped with the heavy communication equipment which requires a high power supply, on-board computing device, and data storage devices. Many wireless communication technologies are deployed to maintain and enhance the traffic management system. The ITS is capable of providing services to the traffic authorities and precautionary measures to the drivers and passengers. Several methods have been proposed for discussing the security and privacy issues for the vehicular ad hoc networks (VANETs) and vehicular cloud computing (VCC). They receive a great deal of attention from researchers around the world since they are new technologies, and they can improve road safety and enhance traffic flow by utilizing the vehicles resources and communication system. Firstly, the VANETs are presented, including the basic overview, characteristics, threats, and attacks. The location privacy methodologies are elaborated, which can protect the confidential information of the vehicle, such as the location detail and driver information. Secondly, the trust management models in the VANETs are comprehensively discussed, followed by the comparison of the cryptography and trust models in terms of different kinds of attacks. Then, the simulation tools and applications of the VANETs are discussed, and the evolution is presented from the VANETs to VCC in the vehicular network. Thirdly, the VCC is discussed from its architecture and the security and privacy issues. Finally, several research challenges on the VANETs and VCC are presented. In sum, this survey comprehensively covers the location privacy and trust management models of the VANETs and discusses the security and privacy issues in the VCC, which fills the gap of existing surveys. Also, it indicates the research challenges in the VANETs and VCC.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8226
Author(s):  
Ahmed M. Alwakeel

With the advancement of different technologies such as 5G networks and IoT the use of different cloud computing technologies became essential. Cloud computing allowed intensive data processing and warehousing solution. Two different new cloud technologies that inherit some of the traditional cloud computing paradigm are fog computing and edge computing that is aims to simplify some of the complexity of cloud computing and leverage the computing capabilities within the local network in order to preform computation tasks rather than carrying it to the cloud. This makes this technology fits with the properties of IoT systems. However, using such technology introduces several new security and privacy challenges that could be huge obstacle against implementing these technologies. In this paper, we survey some of the main security and privacy challenges that faces fog and edge computing illustrating how these security issues could affect the work and implementation of edge and fog computing. Moreover, we present several countermeasures to mitigate the effect of these security issues.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yajing Zhang ◽  
Jia Wei ◽  
Kai Wang

Edge computing solves such questions as the massive multisource data and resource consuming computing tasks in edge devices. Some new security problems especially the data security and privacy issues have been introduced into the edge computing scenario. Through analyzing the biological immune principles, a novel idea for the problem of intrusion detection in edge computing is provided. Specifically, an edge intrusion detection system (Edge IDS) with a distributed structure, which has the characteristics of an imprecise model, self-learning, and strong interactivity, is constructed in a systematic way inspired by the biological immune principles. Moreover, a newly proposed gene immune detection algorithm (GIDA) is designed. In order that Edge IDS can deal with the dynamic data problem efficiently, the key functional components such as the remaining gene, niching strategy, and extracting vaccine are embedded into the GIDA algorithm. Furthermore, extensive simulation experiments are conducted, and the results show that the proposed Edge IDS can be adapted to the domain of edge computing with comparative performance advantages.


Sign in / Sign up

Export Citation Format

Share Document