Computational Analysis of Symmetric and Cambered Blade Darrieus Vertical Axis Wind Turbine With Bio-Mimicked Blade Design

2022 ◽  
pp. 225-240
Author(s):  
Punit Prakash ◽  
Praveen Laws ◽  
Nishant Mishra ◽  
Santanu Mitra

Vertical axis wind turbine suffers from low performance, and the need for improvement is a challenge. This work addresses this problem by using computational fluid dynamics. This chapter aims to analyze and compare symmetric and cambered Darrieus turbine. These analyses are usually carried for straight leading-edge blades, and cambered resembles more the natural shape of the wing of birds and other aquatic mammals, which helps them generate extra lift during movement. Moreover, recent studies suggest better performance was observed for NACA0018 symmetric aerofoil blades, and a similar trend has been observed for NACA2412 cambered aerofoil profiles. Turbine models having symmetric NACA0018 and cambered NACA2412 profiles have been studied. By comparing the symmetric model with cambered blade models, differences in coefficient of torque have been presented. OpenFOAM is used for performing the 2D simulation with dynamicOverset-FvMesh for motion solver with overset mesh method. Meshed geometry was constructed with GMSH codes and the simulation uses overPimpleDyMFoam algorithm as a solver.

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Yichen Jiang ◽  
Peidong Zhao ◽  
Li Zou ◽  
Zhi Zong ◽  
Kun Wang

Abstract The offshore wind industry is undergoing a rapid development due to its advantage over the onshore wind farm. The vertical axis wind turbine (VAWT) is deemed to be potential in offshore wind energy utilization. A design of the offshore vertical axis wind turbine with a deflector is proposed and studied in this paper. Two-dimensional computational fluid dynamics (CFD) simulation is employed to investigate the aerodynamic performance of wind turbine. An effective method of obtaining the blade’s angle of attack (AoA) is introduced in CFD simulation to help analyze the blade aerodynamic torque variation. The numerical simulations are validated against the measured torque and wake velocity, and the results show a good agreement with the experiment. It is found that the blade instantaneous torque is correlated with the local AoA. Among the three deflector configurations, the front deflector leads to favorable local flow for the blade, which is responsible for the improved performance.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Alexandrina Untaroiu ◽  
Houston G. Wood ◽  
Paul E. Allaire ◽  
Robert J. Ribando

Vertical axis wind turbines have always been a controversial technology; claims regarding their benefits and drawbacks have been debated since the initial patent in 1931. Despite this contention, very little systematic vertical axis wind turbine research has been accomplished. Experimental assessments remain prohibitively expensive, while analytical analyses are limited by the complexity of the system. Numerical methods can address both concerns, but inadequate computing power hampered this field. Instead, approximating models were developed which provided some basis for study; but all these exhibited high error margins when compared with actual turbine performance data and were only useful in some operating regimes. Modern computers are capable of more accurate computational fluid dynamics analysis, but most research has focused on horizontal axis configurations or modeling of single blades rather than full geometries. In order to address this research gap, a systematic review of vertical axis wind-power turbine (VAWT) was undertaken, starting with establishment of a methodology for vertical axis wind turbine simulation that is presented in this paper. Replicating the experimental prototype, both 2D and 3D models of a three-bladed vertical axis wind turbine were generated. Full transient computational fluid dynamics (CFD) simulations using mesh deformation capability available in ansys-CFX were run from turbine start-up to operating speed and compared with the experimental data in order to validate the technique. A circular inner domain, containing the blades and the rotor, was allowed to undergo mesh deformation with a rotational velocity that varied with torque generated by the incoming wind. Results have demonstrated that a transient CFD simulation using a two-dimensional computational model can accurately predict vertical axis wind turbine operating speed within 12% error, with the caveat that intermediate turbine performance is not accurately captured.


2018 ◽  
Vol 42 (2) ◽  
pp. 128-135 ◽  
Author(s):  
S Horb ◽  
R Fuchs ◽  
A Immas ◽  
F Silvert ◽  
P Deglaire

NENUPHAR aims at developing the next generation of large-scale floating offshore vertical-axis wind turbine. To challenge the horizontal-axis wind turbine, the variable blade pitch control appears to be a promising solution. This article focuses on blade pitch law optimization and resulting power and thrust gain depending on the operational conditions. The aerodynamics resulting from the implementation of a variable blade pitch control are studied through numerical simulations, either with a three-dimensional vortex code or with two-dimensional Navier-stokes simulations (two-dimensional computational fluid dynamics). Results showed that the three-dimensional vortex code used as quasi-two-dimensional succeeded to give aerodynamic loads in very good agreement with two-dimensional computational fluid dynamics simulation results. The three-dimensional-vortex code was then used in three-dimensional configuration, highlighting that the variable pitch can enhance the vertical-axis wind turbine power coefficient ( Cp) by more than 15% in maximum power point tracking mode and decrease it by more than 75% in power limitation mode while keeping the thrust below its rated value.


Sign in / Sign up

Export Citation Format

Share Document