Improved Boosting Model for Unsteady Nonlinear Aerodynamics based on Computational Intelligence

Author(s):  
Boxu Zhao ◽  
Guiming Luo ◽  
Jihong Zhu

The large-amplitude-oscillation experiment was carried out with two levels of freedom to provide data. Based on the wind tunnel data, polynomial regression, least-square support vector machines and radial basis function neural networks are studied and compared in this paper. An improved model was also developed in this work for unsteady nonlinear aerodynamics on the basis of standard boosting approach. The results on the wind tunnel data show that the predictions of the method are almost consistent with the actual data, thus demonstrating that these methods can model highly nonlinear aerodynamics. The results also indicate that improved boosting model has better accuracy than the other methods.

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Hu Wang ◽  
Songqing Shan ◽  
G. Gary Wang ◽  
Guangyao Li

Many metamodeling techniques have been developed in the past two decades to reduce the computational cost of design evaluation. With the increasing scale and complexity of engineering problems, popular metamodeling techniques including artificial neural network (ANN), Polynomial regression (PR), Kriging (KG), radial basis functions (RBF), and multivariate adaptive regression splines (MARS) face difficulties in solving highly nonlinear problems, such as the crashworthiness design. Therefore, in this work, we integrate the least support vector regression (LSSVR) with the mode pursuing sampling (MPS) optimization method and applied the integrated approach for crashworthiness design. The MPS is used for generating new samples which are concentrated near the current local minima at each iteration and yet still statistically cover the entire design space. The LSSVR is used for establishing a more robust metamodel from noisy data. Therefore, the proposed method integrates the advantages of both the LSSVR and MPS to more efficiently achieve reasonably accurate results. In order to verify the proposed method, well-known highly nonlinear functions are used for testing. Finally, the proposed method is applied to three typical crashworthiness optimization cases. The results demonstrate the potential capability of this method in the crashworthiness design of vehicles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257901
Author(s):  
Yanjing Bi ◽  
Chao Li ◽  
Yannick Benezeth ◽  
Fan Yang

Phoneme pronunciations are usually considered as basic skills for learning a foreign language. Practicing the pronunciations in a computer-assisted way is helpful in a self-directed or long-distance learning environment. Recent researches indicate that machine learning is a promising method to build high-performance computer-assisted pronunciation training modalities. Many data-driven classifying models, such as support vector machines, back-propagation networks, deep neural networks and convolutional neural networks, are increasingly widely used for it. Yet, the acoustic waveforms of phoneme are essentially modulated from the base vibrations of vocal cords, and this fact somehow makes the predictors collinear, distorting the classifying models. A commonly-used solution to address this issue is to suppressing the collinearity of predictors via partial least square regressing algorithm. It allows to obtain high-quality predictor weighting results via predictor relationship analysis. However, as a linear regressor, the classifiers of this type possess very simple topology structures, constraining the universality of the regressors. For this issue, this paper presents an heterogeneous phoneme recognition framework which can further benefit the phoneme pronunciation diagnostic tasks by combining the partial least square with support vector machines. A French phoneme data set containing 4830 samples is established for the evaluation experiments. The experiments of this paper demonstrates that the new method improves the accuracy performance of the phoneme classifiers by 0.21 − 8.47% comparing to state-of-the-arts with different data training data density.


Author(s):  
Melih S. Aslan ◽  
Hossam Abd El Munim ◽  
Aly A. Farag ◽  
Mohamed Abou El-Ghar

Graft failure of kidneys after transplantation is most often the consequence of the acute rejection. Hence, early detection of the kidney rejection is important for the treatment of renal diseases. In this chapter, authors introduce a new automatic approach to classify normal kidney function from kidney rejection using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). The kidney has three regions named the cortex, medulla, and pelvis. In their experiment, they use the medulla region because it has specific responses to DCE-MRI that are helpful to identify kidney rejection. In the authors’ process they segment the kidney using the level sets method. They then employ several classification methods such as the Euclidean distance, Mahalanobis distance, and least square support vector machines (LS-SVM). The authors’preliminary results are very encouraging and reproducibility of the results was achieved for 55 clinical data sets. The classification accuracy, diagnostic sensitivity, and diagnostic specificity are 84%, 75%, and 96%, respectively.


Sign in / Sign up

Export Citation Format

Share Document