Techniques for Skin, Face, Eye and Lip Detection using Skin Segmentation in Color Images

Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Face detection is a challenging and important problem in Computer Vision. In most of the face recognition systems, face detection is used in order to locate the faces in the images. There are different methods for detecting faces in images. One of these methods is to try to find faces in the part of the image that contains human skin. This can be done by using the information of human skin color. Skin detection can be challenging due to factors such as the differences in illumination, different cameras, ranges of skin colors due to different ethnicities, and other variations. Neural networks have been used for detecting human skin. Different methods have been applied to neural networks in order to increase the detection rate of the human skin. The resulting image is then used in the detection phase. The resulting image consists of several components and in the face detection phase, the faces are found by just searching those components. If the components consist of just faces, then the faces can be detected using correlation. Eye and lip detections have also been investigated using different methods, using information from different color spaces. The speed of face detection methods using color images is compared with other face detection methods.

Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection is an important and challenging problem in computer vision. Skin detection can be used as the first phase in face detection when using color images. The differences in illumination and ranges of skin colors have made skin detection a challenging task. Gaussian model, rule based methods, and artificial neural networks are methods that have been used for human skin color detection. Deep learning methods are new techniques in learning that have shown improved classification power compared to neural networks. In this paper the authors use deep learning methods in order to enhance the capabilities of skin detection algorithms. Several experiments have been performed using auto encoders and different color spaces. The proposed technique is evaluated compare with other available methods in this domain using two color image databases. The results show that skin detection utilizing deep learning has better results compared to other methods such as rule-based, Gaussian model and feed forward neural network.


2021 ◽  
Author(s):  
Jun Gao

Detection of human face has many realistic and important applications such as human and computer interface, face recognition, face image database management, security access control systems and content-based indexing video retrieval systems. In this report a face detection scheme will be presented. The scheme is designed to operate on color images. In the first stage of algorithm, the skin color regions are detected based on the chrominance information. A color segmentation stage is then employed to make skin color regions to be divided into smaller regions which have homogenous color. Then, we use the iterative luminance segmentation to further separate the detected skin region from other skin-colored objects such as hair, clothes, and wood, based on the high variance of the luminance component in the neighborhood of edges of objects. Post-processing is applied to determine whether skin color regions fit the face constrains on density of skin, size, shape and symmetry and contain the facial features such as eyes and mouths. Experimental results show that the algorithm is robust and is capable of detecting multiple faces in the presence of a complex background which contains the color similar to the skin tone.


2004 ◽  
Vol 07 (03n04) ◽  
pp. 369-383 ◽  
Author(s):  
IHAB ZAQOUT ◽  
ROZIATI ZAINUDDIN ◽  
SAPIAN BABA

In this paper we have used a simple and efficient color-based approach to segment human skin pixels from background, using a 2D histogram-based approach as a preprocess stage for human face detection. For skin segmentation, a total of 446,007 skin samples from the training set is manually cropped from the RGB color images, to calculate three lookup tables based on the relationship between each pair of the triple components (R, G, B). Derivation of skin classifier rules from the lookup tables are based on how often each attribute value (interval) occurs, and their associated certainty values. For face detection, we assume the face-appearance as blob-like, and that the face has an approximately elliptical shape. Accordingly, an ellipse-fitting algorithm is appropriate, which is based on statistical moments, and those blobs that have an elliptical shape are retained as face candidates.


2015 ◽  
Vol 24 (4) ◽  
pp. 425-436 ◽  
Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

AbstractHuman skin detection is an essential phase in face detection and face recognition when using color images. Skin detection is very challenging because of the differences in illumination, differences in photos taken using an assortment of cameras with their own characteristics, range of skin colors due to different ethnicities, and other variations. Numerous methods have been used for human skin color detection, including the Gaussian model, rule-based methods, and artificial neural networks. In this article, we introduce a novel technique of using the neural network to enhance the capabilities of skin detection. Several different entities were used as inputs of a neural network, and the pros and cons of different color spaces are discussed. Also, a vector was used as the input to the neural network that contains information from three different color spaces. The comparison of the proposed technique with existing methods in this domain illustrates the effectiveness and accuracy of the proposed approach. Tests were done on two databases, and the results show that the neural network has better precision and accuracy rate, as well as comparable recall and specificity, compared with other methods.


2020 ◽  
pp. 1310-1322
Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection is an important and challenging problem in computer vision. Skin detection can be used as the first phase in face detection when using color images. The differences in illumination and ranges of skin colors have made skin detection a challenging task. Gaussian model, rule based methods, and artificial neural networks are methods that have been used for human skin color detection. Deep learning methods are new techniques in learning that have shown improved classification power compared to neural networks. In this paper the authors use deep learning methods in order to enhance the capabilities of skin detection algorithms. Several experiments have been performed using auto encoders and different color spaces. The proposed technique is evaluated compare with other available methods in this domain using two color image databases. The results show that skin detection utilizing deep learning has better results compared to other methods such as rule-based, Gaussian model and feed forward neural network.


2014 ◽  
pp. 61-71
Author(s):  
Yuriy Kurylyak ◽  
Ihor Paliy ◽  
Anatoly Sachenko ◽  
Amine Chohra ◽  
Kurosh Madani

The paper describes improved face detection methods for grayscale and color images using the combined cascade of classifiers and skin color segmentation. The combined cascade with proposed face candidates’ verification method allows achieving one of the best detection rates on CMU test set and a high processing speed suitable for a video flow processing. It’s also shown that the mixture of color spaces is more efficient during the skin color segmentation than the application of one color space. A lot of experiments are made to choose rational parameters for the developed face detection system in order to improve the detection rate, false positives’ number and system’s speed.


Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection and face detection are important and challenging problems in computer vision. The use of color information has increased in recent years due to the lower processing time of face detection compared to black and white images. A number of techniques for skin detection are discussed. Experiments have been performed utilizing deep learning with a variety of color spaces, showing that deep learning produces better results compared to methods such as rule-based, Gaussian model, and feed forward neural network on skin detection. A challenging problem in skin detection is that there are numerous objects with colors similar to that of the human skin. A texture segmentation method has been designed to distinguish between the human skin and objects with similar colors to that of human skin. Once the skin is detected, image is divided into several skin components and the process of detecting the face is limited to these components—increasing the speed of the face detection. In addition, a method for eye and lip detection is proposed using information from different color spaces.


2021 ◽  
Author(s):  
Jun Gao

Detection of human face has many realistic and important applications such as human and computer interface, face recognition, face image database management, security access control systems and content-based indexing video retrieval systems. In this report a face detection scheme will be presented. The scheme is designed to operate on color images. In the first stage of algorithm, the skin color regions are detected based on the chrominance information. A color segmentation stage is then employed to make skin color regions to be divided into smaller regions which have homogenous color. Then, we use the iterative luminance segmentation to further separate the detected skin region from other skin-colored objects such as hair, clothes, and wood, based on the high variance of the luminance component in the neighborhood of edges of objects. Post-processing is applied to determine whether skin color regions fit the face constrains on density of skin, size, shape and symmetry and contain the facial features such as eyes and mouths. Experimental results show that the algorithm is robust and is capable of detecting multiple faces in the presence of a complex background which contains the color similar to the skin tone.


Author(s):  
Manpreet Kaur ◽  
Jasdev Bhatti ◽  
Mohit Kumar Kakkar ◽  
Arun Upmanyu

Introduction: Face Detection is used in many different steams like video conferencing, human-computer interface, in face detection, and in the database management of image. Therefore, the aim of our paper is to apply Red Green Blue ( Methods: The morphological operations are performed in the face region to a number of pixels as the proposed parameter to check either an input image contains face region or not. Canny edge detection is also used to show the boundaries of a candidate face region, in the end, the face can be shown detected by using bounding box around the face. Results: The reliability model has also been proposed for detecting the faces in single and multiple images. The results of the experiments reflect that the algorithm been proposed performs very well in each model for detecting the faces in single and multiple images and the reliability model provides the best fit by analyzing the precision and accuracy. Moreover Discussion: The calculated results show that HSV model works best for single faced images whereas YCbCr and TSL models work best for multiple faced images. Also, the evaluated results by this paper provides the better testing strategies that helps to develop new techniques which leads to an increase in research effectiveness. Conclusion: The calculated value of all parameters is helpful for proving that the proposed algorithm has been performed very well in each model for detecting the face by using a bounding box around the face in single as well as multiple images. The precision and accuracy of all three models are analyzed through the reliability model. The comparison calculated in this paper reflects that HSV model works best for single faced images whereas YCbCr and TSL models work best for multiple faced images.


2011 ◽  
Vol 55-57 ◽  
pp. 77-81
Author(s):  
Hui Ming Huang ◽  
He Sheng Liu ◽  
Guo Ping Liu

In this paper, we proposed an efficient method to address the problem of color face image segmentation that is based on color information and saliency map. This method consists of three stages. At first, skin colored regions is detected using a Bayesian model of the human skin color. Then, we get a chroma chart that shows likelihoods of skin colors. This chroma chart is further segmented into skin region that satisfy the homogeneity property of the human skin. The third stage, visual attention model are employed to localize the face region according to the saliency map while the bottom-up approach utilizes both the intensity and color features maps from the test image. Experimental evaluation on test shows that the proposed method is capable of segmenting the face area quite effectively,at the same time, our methods shows good performance for subjects in both simple and complex backgrounds, as well as varying illumination conditions and skin color variances.


Sign in / Sign up

Export Citation Format

Share Document