Big Data Analytics in Healthcare

2019 ◽  
Vol 10 (4) ◽  
pp. 45-58 ◽  
Author(s):  
Hiba Asri ◽  
Hajar Mousannif ◽  
Hassan Al Moatassime

Sensors and mobile phones shine in the Big Data area due to their capabilities to retrieve a huge amount of real-time data; which was not possible previously. In the specific field of healthcare, we can now collect data related to human behavior and lifestyle for better understanding. This pushed us to benefit from such technologies for early miscarriage prediction. This research study proposes to combine the use of Big Data analytics and data mining models applied to smartphones real-time generated data. A K-means data mining algorithm is used for clustering the dataset and results are transmitted to pregnant woman to make quick decisions; with the intervention of her doctor; through an android mobile application that we created. As well, she receives recommendations based on her behavior. We used real-world data to validate the system and assess its performance and effectiveness. Experiments were made using the Big Data Platform Databricks.

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2994 ◽  
Author(s):  
Bhagya Silva ◽  
Murad Khan ◽  
Changsu Jung ◽  
Jihun Seo ◽  
Diyan Muhammad ◽  
...  

The Internet of Things (IoT), inspired by the tremendous growth of connected heterogeneous devices, has pioneered the notion of smart city. Various components, i.e., smart transportation, smart community, smart healthcare, smart grid, etc. which are integrated within smart city architecture aims to enrich the quality of life (QoL) of urban citizens. However, real-time processing requirements and exponential data growth withhold smart city realization. Therefore, herein we propose a Big Data analytics (BDA)-embedded experimental architecture for smart cities. Two major aspects are served by the BDA-embedded smart city. Firstly, it facilitates exploitation of urban Big Data (UBD) in planning, designing, and maintaining smart cities. Secondly, it occupies BDA to manage and process voluminous UBD to enhance the quality of urban services. Three tiers of the proposed architecture are liable for data aggregation, real-time data management, and service provisioning. Moreover, offline and online data processing tasks are further expedited by integrating data normalizing and data filtering techniques to the proposed work. By analyzing authenticated datasets, we obtained the threshold values required for urban planning and city operation management. Performance metrics in terms of online and offline data processing for the proposed dual-node Hadoop cluster is obtained using aforementioned authentic datasets. Throughput and processing time analysis performed with regard to existing works guarantee the performance superiority of the proposed work. Hence, we can claim the applicability and reliability of implementing proposed BDA-embedded smart city architecture in the real world.


Author(s):  
Christy Coghlan ◽  
Sina Dabiri ◽  
Brian Mayer ◽  
Mitch Wagner ◽  
Eric Williamson ◽  
...  

The Washington Metropolitan Area Transit Authority (WMATA) operates 1,250 buses on 168 different routes between 10,600 bus stops to support around 370,000 passengers each day. Utilizing sensors on vehicles and analyzing their location and movements throughout an hour, trip, or day can provide valuable information to a transit authority as well as to the users of a transit system. This amount of information can be overwhelming, but utilizing big data techniques can empower the data and the transit agency. First, this paper develops a methodology for assessing previous delays in the system by applying big data structure and statistical analysis to the data constantly collected by WMATA buses. This method of analysis also helps quantify the impact of potential transit system improvements. Second, the paper describes a model that uses the real-time data, that represents potential delays, to provide future passengers with more accurate arrival predictions despite delays. These analyses are powerful tools for agencies and planners to assess and improve transit service performance using big data analytics and real-time predictions.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 24510-24520 ◽  
Author(s):  
Sohail Jabbar ◽  
Kaleem R. Malik ◽  
Mudassar Ahmad ◽  
Omar Aldabbas ◽  
Muhammad Asif ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Bhagya Nathali Silva ◽  
Murad Khan ◽  
Kijun Han

The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1) data generation and acquisition level collecting heterogeneous data related to city operations, (2) data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3) application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture.


2019 ◽  
Author(s):  
Meghana Bastwadkar ◽  
Carolyn McGregor ◽  
S Balaji

BACKGROUND This paper presents a systematic literature review of existing remote health monitoring systems with special reference to neonatal intensive care (NICU). Articles on NICU clinical decision support systems (CDSSs) which used cloud computing and big data analytics were surveyed. OBJECTIVE The aim of this study is to review technologies used to provide NICU CDSS. The literature review highlights the gaps within frameworks providing HAaaS paradigm for big data analytics METHODS Literature searches were performed in Google Scholar, IEEE Digital Library, JMIR Medical Informatics, JMIR Human Factors and JMIR mHealth and only English articles published on and after 2015 were included. The overall search strategy was to retrieve articles that included terms that were related to “health analytics” and “as a service” or “internet of things” / ”IoT” and “neonatal intensive care unit” / ”NICU”. Title and abstracts were reviewed to assess relevance. RESULTS In total, 17 full papers met all criteria and were selected for full review. Results showed that in most cases bedside medical devices like pulse oximeters have been used as the sensor device. Results revealed a great diversity in data acquisition techniques used however in most cases the same physiological data (heart rate, respiratory rate, blood pressure, blood oxygen saturation) was acquired. Results obtained have shown that in most cases data analytics involved data mining classification techniques, fuzzy logic-NICU decision support systems (DSS) etc where as big data analytics involving Artemis cloud data analysis have used CRISP-TDM and STDM temporal data mining technique to support clinical research studies. In most scenarios both real-time and retrospective analytics have been performed. Results reveal that most of the research study has been performed within small and medium sized urban hospitals so there is wide scope for research within rural and remote hospitals with NICU set ups. Results have shown creating a HAaaS approach where data acquisition and data analytics are not tightly coupled remains an open research area. Reviewed articles have described architecture and base technologies for neonatal health monitoring with an IoT approach. CONCLUSIONS The current work supports implementation of the expanded Artemis cloud as a commercial offering to healthcare facilities in Canada and worldwide to provide cloud computing services to critical care. However, no work till date has been completed for low resource setting environment within healthcare facilities in India which results in scope for research. It is observed that all the big data analytics frameworks which have been reviewed in this study have tight coupling of components within the framework, so there is a need for a framework with functional decoupling of components.


Sign in / Sign up

Export Citation Format

Share Document