Supply Chain Model with Two Storage Facility for Stock Dependent Demand Incorporating Learning and Inflationary Effect under Crisp and Fuzzy Environment

2017 ◽  
Vol 6 (2) ◽  
pp. 82-109 ◽  
Author(s):  
Chaman Singh ◽  
Shiv R. Singh

In this paper, a supply chain model with power form stock-dependent demand rate is developed, incorporating the effect of learning and inflationary environment. In order to bring their research closer to reality, all the cost parameters involved in the model are considered fuzzy in nature. The demand rate is assumed to be a polynomial form of current inventory level in Own-warehouse. To display the items, retailer has one warehouse of finite capacity, treated as own warehouse (OW) and may hire another warehouse of large capacity, treated as rented warehouse (RW) to storage the excess inventory. Learning effect is incorporated on retailer's selling price, purchasing cost, part of holding cost, deterioration cost and ordering cost. Proposed model is illustrated with some numerical example along with sensitivity analysis of parameters.

Author(s):  
Sahidul Islam ◽  
Sayan Chandra Deb

This article explores a supply chain model consisting of a single manufacturer and two competing retailers. The manufacturer, as a Stackelberg leader specifies a wholesale price and bears servicing costs of the products. Then, both the retailers advertise the products and sell them to the customers. So, the demand of the products is influenced by selling price, service level and also promotional effort. On the basis of this gaming structure, two mathematical models have been formed - crisp model, where each member of the chain exactly knows all the cost parameters and fuzzy model where those cost parameters are considered as fuzzy numbers. Optimal strategies for the manufacturer and the retailers are determined and some numerical examples have been given. Finally, how perturbations of parameters affect the profits of the chain members have been determined.


2021 ◽  
pp. 1-15
Author(s):  
Sudip Adak ◽  
G.S. Mahapatra

This paper develops a fuzzy two-layer supply chain for manufacturer and retailer with defective and non-defective types of products. The manufacturer produces up to a specific time, including faulty and non-defective items, and after the screening, the non-defective item sends to the retailer. The retailer’s strategy is to do the screening of items received from the manufacturer; subsequently, the perfect quality items are used to fulfill the customer’s demand, and the defective items are reworked. The retailer considers that customer demand is time and reliability dependent. The supply chain considers probabilistic deterioration for the manufacturer and retailers along with the strategies such as production rate, unit production cost, cost of idle time of manufacturer, screening, rework, etc. The optimum average profit of the integrated model is evaluated for both the cases crisp and fuzzy environments. Managerial insights and the effect of changes in the parameters’ values on the optimal inventory policy under fuzziness are presented.


Sign in / Sign up

Export Citation Format

Share Document