A Novel Key Management Scheme for Next Generation Internet: An Attack Resistant and Scalable Approach

Author(s):  
Vinod Vijaykumar Kimbahune ◽  
Arvind V. Deshpande ◽  
Parikshit N. Mahalle

The computational complexity of the next generation internet (NGI) is increasing at a faster rate. Due to the large scale of ubiquitous devices, effective and secure communication and addressing mechanism is vulnerable to several threats. Apart from resource constraints of the devices, the unknown topology of the network and the higher risk of device capture make the key management a more challenging task in NGI. In this context, a novel attack resistant and salable key management scheme must be in place to enable end-to-end secure communication. In the first part of the article, is a detailed analysis of various threats along with behavioral modeling of attack. Further, this article presents comprehensive literature survey and the gap analysis. The proposed key management scheme has been evaluated in two scenarios viz. centralized and decentralized and its formal security analysis also proves that it is safe from replay attack. The proposed key management scheme has been evaluated with a performance metric like delay and the results shows that it is salable in nature.

Author(s):  
Vinod Vijaykumar Kimbahune ◽  
Arvind V. Deshpande ◽  
Parikshit Narendra Mahalle

The continuous evolution of Next Generation Internet (NGI) amplifies the demand for efficient and secure communication capable of responding effectively to the challenges posed by the emerging applications. For secure communication between two sensor nodes, a secret key is needed. Cryptographic key management is a challenging task in sensor networks as the hostile environment of sensor networks makes it more prone to attacks. Apart from resource constraints of the devices, unknown topology of the network, the higher risk of node capture and lack of a fixed infrastructure makes the key management more challenging in Wireless Sensor Network (WSN). Paper surveys different key Management schemes for WSN. The paper presents the efficiency versus security requirements tradeoffs in key management for WSN. Paper also proposes a novel key management protocol which provides strong resistance against replay attacks. The results obtained from the mathematical model based on conditional probability of the scheme suggest that the proposed key management in NGI is efficient and attack resistant.


2017 ◽  
Vol 8 (1) ◽  
pp. 50-69 ◽  
Author(s):  
Vinod Vijaykumar Kimbahune ◽  
Arvind V. Deshpande ◽  
Parikshit N Mahalle

The continuous evolution of Next Generation Internet (NGI) amplifies the demand for efficient and secure communication capable of responding effectively to the challenges posed by the emerging applications. For secure communication between two sensor nodes, a secret key is needed. Cryptographic key management is a challenging task in sensor networks as the hostile environment of sensor networks makes it more prone to attacks. Apart from resource constraints of the devices, unknown topology of the network, the higher risk of node capture and lack of a fixed infrastructure makes the key management more challenging in Wireless Sensor Network (WSN). Paper surveys different key Management schemes for WSN. The paper presents the efficiency versus security requirements tradeoffs in key management for WSN. Paper also proposes a novel key management protocol which provides strong resistance against replay attacks. The results obtained from the mathematical model based on conditional probability of the scheme suggest that the proposed key management in NGI is efficient and attack resistant.


2013 ◽  
Vol 442 ◽  
pp. 501-506
Author(s):  
Bo Zhang ◽  
Yu Fei Wang ◽  
Tao Zhang ◽  
Yuan Yuan Ma

With the large-scale construction of smart grid, smart grid terminals widely using wireless access technology to communicate to the power systems. For ensuring the communication security, pair-wise key pre-distribution scheme is widely used, however, which introduces the complexity of key management, and insufficient security problems. According to the smart grid terminals wireless communication features, proposes an intelligent grid wireless terminal online key management scheme, which is based on the t rank binary symmetric polynomial and fully homomorphic encryption algorithm. This scheme make the communication key could be established with a few parameters between the communicating parties, which reduces the complexity of key predistribution and the amount of calculation. Moreover, the whole process of the key generation is encrypted by fully homomorphic encryption algorithm, effectively enhances the security of the scheme.


Sign in / Sign up

Export Citation Format

Share Document