Securing Stored Biometric Template Using Cryptographic Algorithm

2018 ◽  
Vol 5 (4) ◽  
pp. 48-60
Author(s):  
Manmohan Lakhera ◽  
Manmohan Singh Rauthan

The biometric template protection technique provides the security in many authentication applications. Authentication based on biometrics has more advantages over traditional methods such as password and token-based authentication methods. The advantage of any biometric-based authentication system over a traditional one is that the person must physically be present at that place while recognizing him. So, it is essential to secure these biometrics by combining these with cryptography. In the proposed algorithm, the AES algorithm is used for securing the stored and transmitted biometric templates using helping data. The helping data is a variable type of data which is changed at every attempt for registration. The final symmetric key AES algorithm is a combination of helping data and actual symmetric keys of the AES algorithm. The experimental analysis shows that a brute force attack takes a long time to recover the original biometric template from cipher biometric template. So, the proposed technique provides sufficient security to stored biometric templates.

2016 ◽  
Vol 25 (01) ◽  
pp. 1550027 ◽  
Author(s):  
Chouaib Moujahdi ◽  
George Bebis ◽  
Sanaa Ghouzali ◽  
Mounia Mikram ◽  
Mohammed Rziza

Personal authentication systems based on biometrics have given rise to new problems and challenges related to the protection of personal data, issues of less concern in traditional authentication systems. The irrevocability of biometric templates makes biometric systems very vulnerable to several attacks. In this paper we present a new approach for biometric template protection. Our objective is to build a non-invertible transformation, based on random projection, which meets the requirements of revocability, diversity, security and performance. In this context, we use the chaotic behavior of logistic map to build the projection vectors using a methodology that makes the construction of the projection matrix depend on the biometric template and its identity. The proposed approach has been evaluated and compared with Biohashing and BioPhasor using a rigorous security analysis. Our extensive experimental results using several databases (e.g., face, finger-knuckle and iris), show that the proposed technique has the ability to preserve and increase the performance of protected systems. Moreover, it is demonstrated that the security of the proposed approach is sufficiently robust to possible attacks keeping an acceptable balance between discrimination, diversity and non-invertibility.


2019 ◽  
Vol 13 (4) ◽  
pp. 280-285
Author(s):  
Ei Ei Mon ◽  
Sangsuree Vasupongayya ◽  
Montri Karnjanadecha ◽  
Touchai Angchuan

Biometric template protection approaches have been developed to secure the biometric templates against image reconstruction on the stored templates. Two cancellable fingerprint template protection approaches namely minutiae-based bit-string cancellable fingerprint template and modified minutiae-based bit-string cancellable fingerprint template, are selected to be evaluated. Both approaches include the geometric information of the fingerprint into the extracted minutiae. Six modified fingerprint data sets are derived from the original fingerprint images in FVC2002DB1_B and FVC2002DB2_B by conducting the rotation and changing the quality of original fingerprint images according to the environment conditions during an emergency situation such as wet or dry fingers and disoriented angle of fingerprint images. The experimental results show that the modified minutiae-based bit-string cancellable fingerprint template performs well on all conditions during an emergency situation by achieving the matching accuracy between 83% and 100% on FVC2002DB1_B data set and between 99% and 100% on FVC2002DB2_B data set.


2015 ◽  
Vol 1 (7) ◽  
pp. 283 ◽  
Author(s):  
Rubal Jain ◽  
Chander Kant

Biometrics is a pattern recognition system that refers to the use of different physiological (face, fingerprints, etc.) and behavioral (voice, gait etc.) traits for identification and verification purposes. A biometrics-based personal authentication system has numerous advantages over traditional systems such as token-based (e.g., ID cards) or knowledge-based (e.g., password) but they are at the risk of attacks. This paper presents a literature review of attack system architecture and makes progress towards various attack points in biometric system. These attacks may compromise the template resulting in reducing the security of the system and motivates to study existing biometric template protection techniques to resist these attacks.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hailun Liu ◽  
Dongmei Sun ◽  
Ke Xiong ◽  
Zhengding Qiu

Fuzzy vault scheme (FVS) is one of the most popular biometric cryptosystems for biometric template protection. However, error correcting code (ECC) proposed in FVS is not appropriate to deal with real-valued biometric intraclass variances. In this paper, we propose a multidimensional fuzzy vault scheme (MDFVS) in which a general subspace error-tolerant mechanism is designed and embedded into FVS to handle intraclass variances. Palmprint is one of the most important biometrics; to protect palmprint templates; a palmprint based MDFVS implementation is also presented. Experimental results show that the proposed scheme not only can deal with intraclass variances effectively but also could maintain the accuracy and meanwhile enhance security.


2021 ◽  
Vol 297 ◽  
pp. 01046
Author(s):  
Zhour Oumazouz ◽  
Driss Karim

The main objective of the study conducted in this article is to introduce a new algorithm of encryption and decryption of a sensitive message after transforming it into a binary message. Our proposed encryption algorithm is based on the study of a particular graph constructed algebraically from the quadratic residues. We have exploited the Paley graph to introduce an abstract way of encryption of such message bit according to the other message bits by the intermidiate study of the neighborhood of a graph vertex. The strong regularity of the Paley graphs and the unknown behavior of the quadratic residues will play a very important role in the cryptanalysis part which allows to say that the brute force attack remains for the moment the only way to obtain the set of possible messages.


Sign in / Sign up

Export Citation Format

Share Document