scholarly journals Attacks on Biometric Systems: An Overview

2015 ◽  
Vol 1 (7) ◽  
pp. 283 ◽  
Author(s):  
Rubal Jain ◽  
Chander Kant

Biometrics is a pattern recognition system that refers to the use of different physiological (face, fingerprints, etc.) and behavioral (voice, gait etc.) traits for identification and verification purposes. A biometrics-based personal authentication system has numerous advantages over traditional systems such as token-based (e.g., ID cards) or knowledge-based (e.g., password) but they are at the risk of attacks. This paper presents a literature review of attack system architecture and makes progress towards various attack points in biometric system. These attacks may compromise the template resulting in reducing the security of the system and motivates to study existing biometric template protection techniques to resist these attacks.

Author(s):  
David Zhang ◽  
Fengxi Song ◽  
Yong Xu ◽  
Zhizhen Liang

A biometric system can be regarded as a pattern recognition system. In this chapter, we discuss two advanced pattern recognition technologies for biometric recognition, biometric data discrimination and multi-biometrics, to enhance the recognition performance of biometric systems. In Section 1.1, we discuss the necessity, importance, and applications of biometric recognition technology. A brief introduction of main biometric recognition technologies are presented in Section 1.2. In Section 1.3, we describe two advanced biometric recognition technologies, biometric data discrimination and multi-biometric technologies. Section 1.4 outlines the history of related work and highlights the content of each chapter of this book.


2018 ◽  
Vol 18 (01) ◽  
pp. 1850006 ◽  
Author(s):  
Bismita Choudhury ◽  
Patrick Then ◽  
Biju Issac ◽  
Valliappan Raman ◽  
Manas Kumar Haldar

Now-a-days, biometric systems have replaced the password or token based authentication system in many fields to improve the security level. However, biometric system is also vulnerable to security threats. Unlike password based system, biometric templates cannot be replaced if lost or compromised. To deal with the issue of the compromised biometric template, template protection schemes evolved to make it possible to replace the biometric template. Cancelable biometric is such a template protection scheme that replaces a biometric template when the stored template is stolen or lost. It is a feature domain transformation where a distorted version of a biometric template is generated and matched in the transformed domain. This paper presents a review on the state-of-the-art and analysis of different existing methods of biometric based authentication system and cancelable biometric systems along with an elaborate focus on cancelable biometrics in order to show its advantages over the standard biometric systems through some generalized standards and guidelines acquired from the literature. We also proposed a highly secure method for cancelable biometrics using a non-invertible function based on Discrete Cosine Transformation (DCT) and Huffman encoding. We tested and evaluated the proposed novel method for 50 users and achieved good results.


2018 ◽  
Vol 5 (4) ◽  
pp. 48-60
Author(s):  
Manmohan Lakhera ◽  
Manmohan Singh Rauthan

The biometric template protection technique provides the security in many authentication applications. Authentication based on biometrics has more advantages over traditional methods such as password and token-based authentication methods. The advantage of any biometric-based authentication system over a traditional one is that the person must physically be present at that place while recognizing him. So, it is essential to secure these biometrics by combining these with cryptography. In the proposed algorithm, the AES algorithm is used for securing the stored and transmitted biometric templates using helping data. The helping data is a variable type of data which is changed at every attempt for registration. The final symmetric key AES algorithm is a combination of helping data and actual symmetric keys of the AES algorithm. The experimental analysis shows that a brute force attack takes a long time to recover the original biometric template from cipher biometric template. So, the proposed technique provides sufficient security to stored biometric templates.


2011 ◽  
pp. 108-113
Author(s):  
Chander Kant

Fingerprints possess two main types of features that are used for automatic fingerprint identification and verification: (i) Ridge and Furrow structure that forms a special pattern in the central region of the fingerprint and (ii) Minutiae details associated with the local ridge and furrow structure. In a traditional biometric recognition system, the biometric template is usually stored on a central server during enrollment. The candidate biometric template captured by the biometric device is sent to the server where the processing and matching steps are performed. The proposed work presents an approach to the processing time during fingerprint matching process in a Biometric System. The proposed work is based upon four major classifications of fingerprint, whorl, arch, left-loop and right-loop and is more efficient as compared with the existing system.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hailun Liu ◽  
Dongmei Sun ◽  
Ke Xiong ◽  
Zhengding Qiu

Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.


Author(s):  
V. Jagan Naveen ◽  
K. Krishna Kishore ◽  
P. Rajesh Kumar

In the modern world, human recognition systems play an important role to   improve security by reducing chances of evasion. Human ear is used for person identification .In the Empirical study on research on human ear, 10000 images are taken to find the uniqueness of the ear. Ear based system is one of the few biometric systems which can provides stable characteristics over the age. In this paper, ear images are taken from mathematical analysis of images (AMI) ear data base and the analysis is done on ear pattern recognition based on the Expectation maximization algorithm and k means algorithm.  Pattern of ears affected with different types of noises are recognized based on Principle component analysis (PCA) algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hailun Liu ◽  
Dongmei Sun ◽  
Ke Xiong ◽  
Zhengding Qiu

Fuzzy vault scheme (FVS) is one of the most popular biometric cryptosystems for biometric template protection. However, error correcting code (ECC) proposed in FVS is not appropriate to deal with real-valued biometric intraclass variances. In this paper, we propose a multidimensional fuzzy vault scheme (MDFVS) in which a general subspace error-tolerant mechanism is designed and embedded into FVS to handle intraclass variances. Palmprint is one of the most important biometrics; to protect palmprint templates; a palmprint based MDFVS implementation is also presented. Experimental results show that the proposed scheme not only can deal with intraclass variances effectively but also could maintain the accuracy and meanwhile enhance security.


Sign in / Sign up

Export Citation Format

Share Document