Hybridization of Artificial Neural Network and Particle Swarm Optimization Methods for Time Series Forecasting

2013 ◽  
Vol 4 (3) ◽  
pp. 75-90 ◽  
Author(s):  
Ratnadip Adhikari ◽  
R. K. Agrawal

Recently, Particle Swarm Optimization (PSO) has evolved as a promising alternative to the standard backpropagation (BP) algorithm for training Artificial Neural Networks (ANNs). PSO is advantageous due to its high search power, fast convergence rate and capability of providing global optimal solution. In this paper, the authors explore the improvements in forecasting accuracies of feedforward as well as recurrent neural networks through training with PSO. Three widely popular versions of the basic PSO algorithm, viz. Trelea-I, Trelea-II and Clerc-Type1 are used to train feedforward ANN (FANN) and Elman ANN (EANN) models. A novel nonlinear hybrid architecture is proposed to incorporate the training strengths of all these three PSO algorithms. Experiments are conducted on four real-world time series with the three forecasting models, viz. Box-Jenkins, FANN and EANN. Obtained results clearly demonstrate the superior forecasting performances of all three PSO algorithms over their BP counterpart for both FANN as well as EANN models. Both PSO and BP based neural networks also achieved notably better accuracies than the statistical Box-Jenkins methods. The forecasting performances of the neural network models are further improved through the proposed hybrid PSO framework.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Leke Zajmi ◽  
Falah Y. H. Ahmed ◽  
Adam Amril Jaharadak

With the advancement of Machine Learning, since its beginning and over the last years, a special attention has been given to the Artificial Neural Network. As an inspiration from natural selection of animal groups and human’s neural system, the Artificial Neural Network also known as Neural Networks has become the new computational power which is used for solving real world problems. Neural Networks alone as a concept involve various methods for achieving their success; thus, this review paper describes an overview of such methods called Particle Swarm Optimization, Backpropagation, and Neural Network itself, respectively. A brief explanation of the concepts, history, performances, advantages, and disadvantages is given, followed by the latest researches done on these methods. A description of solutions and applications on various industrial sectors such as Medicine or Information Technology has been provided. The last part briefly discusses the directions, current, and future challenges of Neural Networks towards achieving the highest success rate in solving real world problems.


Author(s):  
Harry Ganda Nugraha ◽  
Azhari SN

AbstrakMasalah peramalan adalah masalah yang sering ditemukan dalam proses pengambilan keputusan. Tool yang cukup populer untuk menangani masalah peramalan adalah jaringan syaraf tiruan. Jaringan syaraf tiruan banyak digunakan karena kemampuannya untuk meramalkan data nonlinear time series. Algoritma pembelajaran yang sering digunakan untuk memperbaiki bobot pada jaringan syaraf tiruan adalah backpropagation. Namun proses pembelajaran backpropagation terkadang menemui kendala seperti over fiting sehingga tidak dapat menggeneralisasi masalah. Untuk mengatasi masalah tersebut diusulkan penggunaan particle swarm optimization untuk melatih bobot pada jaringan. Performa dari masing-masing model akan diukur dengan mean square error, mean absolute percentage error, normalized mean square error, prediction of change in direction, average relative variance. Untuk keperluan analisis model digunakan data time series inflasi di indonesia. Metode yang diusulkan menunjukan sistem jaringan hybrid mampu menangani masalah peramalan data time series dengan performa mendekati jaringan syaraf tiruan backpropagation.. Kata kunci—jaringan syaraf tiruan, particle swarm optimization, prediction of change in direction, average relative variance .  AbstractForecasting problem is common problem that easily found in decision making process. The popular tool to handle that problem is artificial neural network. Artificial neural network have been widely use because its ability to forecast nonlinear time series data. The learning method that have been widely use to train artificial neural network weight is backpropagation. Otherwise backpropagation learning process sometimes find problem such as over fiting so it can’t generalized the problem. Particle swarm optimization method had been proposed to train artificial neural network weigth. Mean square error, mean absolute percentage error, normalized mean square error, prediction of change in direction, average relative variance had been use to measures the model performance. Indonesia inflation time series data had been use to analyzed the model. The proposed method show that hybrid system could handle the time series forecasting problem as good as backpropagation artificial neural network Keywords—artificial neural network, particle swarm optimization, prediction of change in direction, average relative variance.


Química Nova ◽  
2013 ◽  
Vol 36 (6) ◽  
pp. 783-789 ◽  
Author(s):  
Francisco S. de Albuquerque Filho ◽  
Francisco Madeiro ◽  
Sérgio M. M. Fernandes ◽  
Paulo S. G. de Mattos Neto ◽  
Tiago A. E. Ferreira

2021 ◽  
Author(s):  
Wei Li ◽  
Haonan Luo ◽  
Zhou Lei ◽  
Junqing Yuan ◽  
Wangshun Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document