An Integrated Decision Support System for Intercropping

2010 ◽  
Vol 2 (3) ◽  
pp. 51-66 ◽  
Author(s):  
A. S. Sodiya ◽  
A. T. Akinwale ◽  
K. A. Okeleye ◽  
J. A. Emmanuel

Intercropping, which is the agricultural practice of growing two or more crops in the same land area, is not currently yielding adequate results in Africa. Despite the advantages of intercropping like improved soil fertility, protection against pests and diseases and eventual increase in farm yield, this farming practice is faced with challenges—inadequate planning, bad crop management and lack of required intercropping expertise. Consequently, this has resulted in inadequate reward for farmers and a general decline in crop production. In this regard, the authors present an Intelligent and Integrated Intercropping Decision Support System for Intercropping (IDSS-I) for improved crop production. The design adopts a forecasting component that provides farmers with the estimated yield and income depending on the size of land, soil type and weather condition. Although the implementation was carried out using JAVA and SQL, usability testing revealed 85% acceptance of the tool among the contacted 10 large scale farmers. It was also confirmed that the system provided 95% diagnosis information for 90% common Africa crop diseases.

Author(s):  
A. S. Sodiya ◽  
A. T. Akinwale ◽  
K. A. Okeleye ◽  
J. A. Emmanuel

Intercropping, which is the agricultural practice of growing two or more crops in the same land area, is not currently yielding adequate results in Africa. Despite the advantages of intercropping like improved soil fertility, protection against pests and diseases and eventual increase in farm yield, this farming practice is faced with challenges—inadequate planning, bad crop management and lack of required intercropping expertise. Consequently, this has resulted in inadequate reward for farmers and a general decline in crop production. In this regard, the authors present an Intelligent and Integrated Intercropping Decision Support System for Intercropping (IDSS-I) for improved crop production. The design adopts a forecasting component that provides farmers with the estimated yield and income depending on the size of land, soil type and weather condition. Although the implementation was carried out using JAVA and SQL, usability testing revealed 85% acceptance of the tool among the contacted 10 large scale farmers. It was also confirmed that the system provided 95% diagnosis information for 90% common Africa crop diseases.


Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1357 ◽  
Author(s):  
Simon Hirzel ◽  
Tim Hettesheimer ◽  
Peter Viebahn ◽  
Manfred Fischedick

New energy technologies may fail to make the transition to the market once research funding has ended due to a lack of private engagement to conclude their development. Extending public funding to cover such experimental developments could be one way to improve this transition. However, identifying promising research and development (R&D) proposals for this purpose is a difficult task for the following reasons: Close-to-market implementations regularly require substantial resources while public budgets are limited; the allocation of public funds needs to be fair, open, and documented; the evaluation is complex and subject to public sector regulations for public engagement in R&D funding. This calls for a rigorous evaluation process. This paper proposes an operational three-staged decision support system (DSS) to assist decision-makers in public funding institutions in the ex-ante evaluation of R&D proposals for large-scale close-to-market projects in energy research. The system was developed based on a review of literature and related approaches from practice combined with a series of workshops with practitioners from German public funding institutions. The results confirm that the decision-making process is a complex one that is not limited to simply scoring R&D proposals. Decision-makers also have to deal with various additional issues such as determining the state of technological development, verifying market failures or considering existing funding portfolios. The DSS that is suggested in this paper is unique in the sense that it goes beyond mere multi-criteria aggregation procedures and addresses these issues as well to help guide decision-makers in public institutions through the evaluation process.


2021 ◽  
Author(s):  
Andreas Livera ◽  
Marios Theristis ◽  
Alexios Charalambous ◽  
Joshua S. Stein ◽  
George E. Georghiou

Author(s):  
Yasmina Bouzarour-Amokrane ◽  
Ayeley P. Tchangani ◽  
François Pérès

The necessity to control and reduce the negative impact of human activities on environment and life quality along with technology progress in renewable energy in general and wind energy in particular render it possible today to consider wind energy projects on a large scale. Developing wind energy on a large scale however raises other problems such as choosing an adequate site to settle a wind farm where many other issues such technical feasibility and performance levels, visual pollution, economic and social concerns, etc. must be addressed. Such decisions usually involve many parameters and necessitate the collaboration of many stakeholders. In this context, this chapter proposes an approach based on the concept of bipolar analysis through Benefit Opportunity Cost and Risk (BOCR) analysis, which permits one to address correctly a Group Decision-Making Problem (GDMP) to build a decision support system in order to assist the wind farm installation process.


Author(s):  
Mohammad Tafiqur Rahman

Decision making on relief distribution is a complex multidisciplinary task in humanitarian logistics. It incorporates decision makers from different but related problem areas. The failure to perform assigned decision-making tasks in any area makes the entire system unstable and delays the relief distribution process. An organized, well-planned, and practical decision support system (DSS) can assist practitioners in making rapid decisions on delivering relief items. Hence, DSS researchers in humanitarian logistics require rigorous thinking, close and critical analysis, and the identification of challenges to conduct research or validate the generated knowledge properly. To perform such complex knowledge-based tasks, the philosophical understanding of DSS in the humanitarian context is necessary. After analyzing the commonly used philosophical paradigms, this research identifies the pragmatic approach as the adequate support for solving decision-making problems in relief distribution during large-scale disasters.


2019 ◽  
Vol 4 (1) ◽  
pp. 305-321 ◽  
Author(s):  
M. Cunha ◽  
S.G. Gonçalves

AbstractMechanisation is a key input in modern agriculture, while it accounts for a large part of crop production costs, it can bring considerable farm benefits if well managed. Models for simulated machinery costs, may not replace actual cost measurements but the information obtained through them can replace a farm’s existing records, becoming more valuable to decision makers. MACHoice, a decision support system (DSS) presented in this paper, is a farm machinery cost estimator and break-even analyzer of alternatives for agricultural operations, developed using user-driven expectations and in close collaboration with agronomists and computer engineers. It integrates an innovative algorithm developed for projections of machinery costs under different rates of annual machine use and work capacity processing, which is crucial to decisions on break-even machinery alternatives. A case study based on the comparison of multiple alternatives for grape harvesting operations is presented to demonstrate the typical results that can be expected from MACHoice, and to identify its capabilities and limitations. This DSS offers an integrated and flexible analysis environment with a user-friendly graphical interface as well as a high level of automation of processing chains. The DSS-output consists of charts and tables, evidencing the differences related to costs and carbon emissions between the options inserted by the user for the different intensity of yearly work proceeded. MACHoice is an interactive web-based tool that can be accessed freely for non-commercial use by every known browser.


Author(s):  
Gerrit Hoogenboom ◽  
Gordon Y. Tsuji ◽  
Nigel B. Pickering ◽  
R. Bruce Curry ◽  
James W. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document