An Intelligent Operator for Genetic Fuzzy Rule Based System

2011 ◽  
Vol 7 (3) ◽  
pp. 28-40 ◽  
Author(s):  
C. Rani ◽  
S. N. Deepa

This paper proposes a modified form of operator based on Particle Swarm Optimization (PSO) for designing Genetic Fuzzy Rule Based System (GFRBS). The usual procedure of velocity updating in PSO is modified by calculating the velocity using chromosome’s individual best value and global best value based on an updating probability without considering the inertia weight, old velocity and constriction factors. This kind of calculation brings intelligent information sharing mechanism and memory capability to Genetic Algorithm (GA) and can be easily implemented along with other genetic operators. The performance of the proposed operator is evaluated using ten publicly available bench mark data sets. Simulation results show that the proposed operator introduces new material into the population, thereby allows faster and more accurate convergence without struck into a local optima. Statistical analysis of the experimental results shows that the proposed operator produces a classifier model with minimum number of rules and higher classification accuracy.

Author(s):  
C. Rani ◽  
S. N. Deepa

This paper proposes a modified form of operator based on Particle Swarm Optimization (PSO) for designing Genetic Fuzzy Rule Based System (GFRBS). The usual procedure of velocity updating in PSO is modified by calculating the velocity using chromosome’s individual best value and global best value based on an updating probability without considering the inertia weight, old velocity and constriction factors. This kind of calculation brings intelligent information sharing mechanism and memory capability to Genetic Algorithm (GA) and can be easily implemented along with other genetic operators. The performance of the proposed operator is evaluated using ten publicly available bench mark data sets. Simulation results show that the proposed operator introduces new material into the population, thereby allows faster and more accurate convergence without struck into a local optima. Statistical analysis of the experimental results shows that the proposed operator produces a classifier model with minimum number of rules and higher classification accuracy.


2014 ◽  
Vol 8 (3) ◽  
pp. 335-356 ◽  
Author(s):  
Andreiwid Sheffer Corrêa ◽  
Alexandre de Assis Mota ◽  
Lia Toledo Moreira Mota ◽  
Pedro Luiz Pizzigatti Corrêa

Purpose – The purpose of this study is to present a system called NEBULOSUS, which is a fuzzy rule-based expert system for assessing the maturity level of an agency regarding technical interoperability. Design/methodology/approach – The study introduces the use of artificial intelligence and fuzzy logic to deal with the imprecision and uncertainty present in the assessment process. To validate the system proposed and demonstrate its operation, the study takes into account the Brazilian technical interoperability maturity model, based on the Brazilian Government Interoperability Framework (GIF). Findings – With the system proposed and its methodology, it could be possible to increase the assessment process to management level and to provide decision-making support without worrying about technical details that make it complex and time-consuming. Moreover, NEBULOSUS is a standalone system that offers an easy-to-use, open and flexible structuring database that can be adapted by governments throughout the world. It will serve as a tool and contribute to governments’ expectations for continuous improvement of their technologies. Originality/value – This study contributes toward filling a gap in general interoperability architectures, which is a means to provide an objective method to evaluate GIF adherence by governments. The proposed system allows governments to configure their technical models and GIF to assess information and communication technology resources.


2012 ◽  
Vol 66 (8) ◽  
pp. 1766-1773 ◽  
Author(s):  
J. Yazdi ◽  
S. A. A. S. Neyshabouri

Population growth and urbanization in the last decades have increased the vulnerability of properties and societies in flood-prone areas. Vulnerability analysis is one of the main factors used to determine the necessary measures of flood risk reduction in floodplains. At present, the vulnerability of natural disasters is analyzed by defining the various physical and social indices. This study presents a model based on a fuzzy rule-based system to address various ambiguities and uncertainties from natural variability, and human knowledge and preferences in vulnerability analysis. The proposed method is applied for a small watershed as a case study and the obtained results are compared with one of the index approaches. Both approaches present the same ranking for the sub-basin's vulnerability in the watershed. Finally, using the scores of vulnerability in different sub-basins, a vulnerability map of the watershed is presented.


Sign in / Sign up

Export Citation Format

Share Document