Integrating the LMS in Service Oriented eLearning Systems

2011 ◽  
Vol 2 (2) ◽  
pp. 1-12 ◽  
Author(s):  
José Paulo Leal ◽  
Ricardo Queirós

Learning management systems are routinely used for presenting, solving and grading exercises with large classes. However, teachers are constrained to use questions with pre-defined answers, such as multiple-choice, to automatically correct the exercises of their students. Complex exercises cannot be evaluated automatically by the LMS and require the coordination of a set of heterogeneous systems. For instance, programming exercises require a specialized exercise resolution environment and automatic evaluation features, each provided by a different type of system. In this paper, the authors discuss an approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach is based on a pivot component embedded in the LMS and has two main roles: 1) provide an exercise resolution environment, and 2) coordinate communication between the LMS and other systems, exposing their functions as web services. The integration of the pivot component in the LMS relies on Learning Tools Interoperability (LTI). This paper presents an architecture to coordinate a network of eLearning systems and validate the proposed approach by creating such a network integrated with LMS from two different vendors.

2012 ◽  
pp. 1261-1271
Author(s):  
José Paulo Leal ◽  
Ricardo Queirós

Learning management systems are routinely used for presenting, solving and grading exercises with large classes. However, teachers are constrained to use questions with pre-defined answers, such as multiple-choice, to automatically correct the exercises of their students. Complex exercises cannot be evaluated automatically by the LMS and require the coordination of a set of heterogeneous systems. For instance, programming exercises require a specialized exercise resolution environment and automatic evaluation features, each provided by a different type of system. In this paper, the authors discuss an approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach is based on a pivot component embedded in the LMS and has two main roles: 1) provide an exercise resolution environment, and 2) coordinate communication between the LMS and other systems, exposing their functions as web services. The integration of the pivot component in the LMS relies on Learning Tools Interoperability (LTI). This paper presents an architecture to coordinate a network of eLearning systems and validate the proposed approach by creating such a network integrated with LMS from two different vendors.


2012 ◽  
pp. 1265-1275
Author(s):  
José Paulo Leal ◽  
Ricardo Queirós

Learning management systems are routinely used for presenting, solving and grading exercises with large classes. However, teachers are constrained to use questions with pre-defined answers, such as multiple-choice, to automatically correct the exercises of their students. Complex exercises cannot be evaluated automatically by the LMS and require the coordination of a set of heterogeneous systems. For instance, programming exercises require a specialized exercise resolution environment and automatic evaluation features, each provided by a different type of system. In this paper, the authors discuss an approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach is based on a pivot component embedded in the LMS and has two main roles: 1) provide an exercise resolution environment, and 2) coordinate communication between the LMS and other systems, exposing their functions as web services. The integration of the pivot component in the LMS relies on Learning Tools Interoperability (LTI). This paper presents an architecture to coordinate a network of eLearning systems and validate the proposed approach by creating such a network integrated with LMS from two different vendors.


Author(s):  
José Paulo Leal ◽  
Ricardo Queirós

Learning management systems are routinely used for presenting, solving and grading exercises with large classes. However, teachers are constrained to use questions with pre-defined answers, such as multiple-choice, to automatically correct the exercises of their students. Complex exercises cannot be evaluated automatically by the LMS and require the coordination of a set of heterogeneous systems. For instance, programming exercises require a specialized exercise resolution environment and automatic evaluation features, each provided by a different type of system. In this paper, the authors discuss an approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach is based on a pivot component embedded in the LMS and has two main roles: (1) provide an exercise resolution environment, and (2) coordinate communication between the LMS and other systems, exposing their functions as web services. The integration of the pivot component in the LMS relies on Learning Tools Interoperability (LTI). This paper presents an architecture to coordinate a network of eLearning systems and validate the proposed approach by creating such a network integrated with LMS from two different vendors.


2021 ◽  
pp. 004005992199673
Author(s):  
Ling Zhang ◽  
Haidee A. Jackson ◽  
Tiffany L. Hunt ◽  
Richard Allen Carter ◽  
Sohyun Yang ◽  
...  

Mathematical problem solving is a complex cognitive activity, which poses difficulties for students with and without disabilities in inclusive learning environments. With a variety of functions, Learning Management Systems (LMSs) have the potential to enhance personalized learning to meet the diverse needs of all students. This paper provides teachers guidance on using LMSs to implement evidence-based practices for math problem solving in an online learning environment. This paper introduced multiple functions commonly available in most LMSs, such as quiz, multimedia content editor, Learning Tools Interoperability (LTI), and learning analytics. Guidance is provided to teachers to leverage these features to maximize student learning experiences, such as engaging in multimedia learning activities, interacting with the teacher and peers, and receiving tailored feedback.


Sign in / Sign up

Export Citation Format

Share Document