scholarly journals Improving the Yield of Histological Sampling in Patients With Suspected Colorectal Cancer During Colonoscopy by Introducing a Colonoscopy Quality Assurance Program

2011 ◽  
Author(s):  
Gado
2020 ◽  
Vol 91 (6) ◽  
pp. AB463-AB464
Author(s):  
Manon Spaander ◽  
Pieter Wisse ◽  
S.Y.d. Boer ◽  
B. den Hartog ◽  
M. Oudkerk Pool ◽  
...  

2011 ◽  
Vol 25 (10) ◽  
pp. 547-554 ◽  
Author(s):  
Robert J Hilsden ◽  
Alaa Rostom ◽  
Catherine Dubé ◽  
Darlene Pontifex ◽  
S Elizabeth McGregor ◽  
...  

Quality assurance (QA) is a process that includes the systematic evaluation of a service, institution of improvements and ongoing evaluation to ensure that effective changes were made. QA is a fundamental component of any organized colorectal cancer screening program. However, it should play an equally important role in opportunistic screening. Establishing the processes and procedures for a comprehensive QA program can be a daunting proposition for an endoscopy unit. The present article describes the steps taken to establish a QA program at the Forzani & MacPhail Colon Cancer Screening Centre (Calgary, Alberta) – a colorectal cancer screening centre and nonhospital endoscopy unit that is dedicated to providing colorectal cancer screening-related colonoscopies. Lessons drawn from the authors’ experience may help others develop their own initiatives. The Global Rating Scale, a quality assessment and improvement tool developed for the gastrointestinal endoscopy services of the United Kingdom’s National Health Service, was used as the framework to develop the QA program. QA activities include monitoring the patient experience through surveys, creating endoscopist report cards on colonoscopy performance, tracking and evaluating adverse events and monitoring wait times.


2004 ◽  
Vol 101 (Supplement3) ◽  
pp. 351-355 ◽  
Author(s):  
Javad Rahimian ◽  
Joseph C. Chen ◽  
Ajay A. Rao ◽  
Michael R. Girvigian ◽  
Michael J. Miller ◽  
...  

Object. Stringent geometrical accuracy and precision are required in the stereotactic radiosurgical treatment of patients. Accurate targeting is especially important when treating a patient in a single fraction of a very high radiation dose (90 Gy) to a small target such as that used in the treatment of trigeminal neuralgia (3 to 4—mm diameter). The purpose of this study was to determine the inaccuracies in each step of the procedure including imaging, fusion, treatment planning, and finally the treatment. The authors implemented a detailed quality-assurance program. Methods. Overall geometrical accuracy of the Novalis stereotactic system was evaluated using a Radionics Geometric Phantom Chamber. The phantom has several magnetic resonance (MR) and computerized tomography (CT) imaging—friendly objects of various shapes and sizes. Axial 1-mm-thick MR and CT images of the phantom were acquired using a T1-weighted three-dimensional spoiled gradient recalled pulse sequence and the CT scanning protocols used clinically in patients. The absolute errors due to MR image distortion, CT scan resolution, and the image fusion inaccuracies were measured knowing the exact physical dimensions of the objects in the phantom. The isocentric accuracy of the Novalis gantry and the patient support system was measured using the Winston—Lutz test. Because inaccuracies are cumulative, to calculate the system's overall spatial accuracy, the root mean square (RMS) of all the errors was calculated. To validate the accuracy of the technique, a 1.5-mm-diameter spherical marker taped on top of a radiochromic film was fixed parallel to the x–z plane of the stereotactic coordinate system inside the phantom. The marker was defined as a target on the CT images, and seven noncoplanar circular arcs were used to treat the target on the film. The calculated system RMS value was then correlated with the position of the target and the highest density on the radiochromic film. The mean spatial errors due to image fusion and MR imaging were 0.41 ± 0.3 and 0.22 ± 0.1 mm, respectively. Gantry and couch isocentricities were 0.3 ± 0.1 and 0.6 ± 0.15 mm, respectively. The system overall RMS values were 0.9 and 0.6 mm with and without the couch errors included, respectively (isocenter variations due to couch rotation are microadjusted between couch positions). The positional verification of the marker was within 0.7 ± 0.1 mm of the highest optical density on the radiochromic film, correlating well with the system's overall RMS value. The overall mean system deviation was 0.32 ± 0.42 mm. Conclusions. The highest spatial errors were caused by image fusion and gantry rotation. A comprehensive quality-assurance program was developed for the authors' stereotactic radiosurgery program that includes medical imaging, linear accelerator mechanical isocentricity, and treatment delivery. For a successful treatment of trigeminal neuralgia with a 4-mm cone, the overall RMS value of equal to or less than 1 mm must be guaranteed.


Sign in / Sign up

Export Citation Format

Share Document