New Management Control Rules for Bering Sea and Aleutian Islands Crab Fisheries

Author(s):  
M.S.M. Siddeek ◽  
L.J. Rugolo ◽  
J. Zheng ◽  
B.J. Turnock
2018 ◽  
Vol 27 (6) ◽  
pp. 548-559 ◽  
Author(s):  
Sonia Dawn Batten ◽  
Gregory T. Ruggerone ◽  
Ivonne Ortiz

2011 ◽  
Vol 68 (2) ◽  
pp. 343-359 ◽  
Author(s):  
Elizabeth A. Babcock ◽  
Alec D. MacCall

A management strategy evaluation (based on five species in the California, USA, nearshore fishery) of control rules that reduce relative fishing effort as a function of the ratio of fish density outside versus inside no-take marine reserves (as a measure of depletion) showed that although the control rules allowed effort to increase at first, in the long term, they were effective at maintaining spawning stock biomass and yield for all simulated species, including depleted ones. Scenarios with fish movement, illegal fishing in the reserve, or post-dispersal density dependence in recruitment required higher density ratio targets, such as 60% of mature fish or 80% of all fish, to avoid stock depletion. The effort allowed by multispecies density-ratio control rules depended on the relative weight given to more or less depleted species. High variability in recruitment or in monitoring data caused the allowable effort to fluctuate. Density-ratio control rules have the advantages that they require no historical data, they can be used at local spatial scales, and they adjust to changing environmental conditions.


2016 ◽  
Vol 132 ◽  
pp. 227-239 ◽  
Author(s):  
Carolina Parada ◽  
Sarah Hinckley ◽  
John Horne ◽  
Michael Mazur ◽  
Albert Hermann ◽  
...  

1968 ◽  
Vol 46 (5) ◽  
pp. 849-854 ◽  
Author(s):  
David L. Chesemore

White foxes occur on the tundra of northern and western Alaska and predominate on St. Lawrence, St. Matthew, Hall, and Diomede Islands in the Bering Sea. Few white foxes are found on the Pribilof and Aleutian Islands where blue foxes dominate the local fox population. On the Alaskan Arctic Slope, two seasonal movements, the first in the fall when foxes move seaward towards the coast and sea ice, and the second in late winter and early spring when they return inland to occupy summer den sites, occur. Although reported in other arctic areas, no definite records of fox migrations in northern Alaska exist. Distribution records for white foxes in Alaska are summarized.


2020 ◽  
Vol 200 ◽  
pp. 38-57
Author(s):  
A. O. Zolotov ◽  
O. G. Zolotov ◽  
Yu. K. Kurbanov

Atka mackerel Pleurogrammus monopterygius is one of the mass species of fam. Hexagrammidae that inhabits the boreal and subarctic waters of the North Pacific and forms two large populations in its western and eastern parts. Reproductive range of the eastern, Aleutian population extends from the Gulf of Alaska, along Aleutian Islands to Commander Islands, with the main spawning grounds at the Aleutians and in the southeastern Bering Sea. From these areas, the fish at early stages of ontogenesis spread widely in system of the Bering Sea currents to the western-southwestern Bering Sea, where the atka mackerel aggregations are formed on the external shelf at prominent capes, as Cape Olyutorsky. Dynamics of the atka mackerel stock in the Olyutorsky-Navarinsky area in 1994–2019 is presented on the base of bottom trawl surveys, fishery statistics, and open NOAA data. After the period of low stock in the middle 1990s, the atka mackerel abundance increased sharply to the maximum in 2006–2008, when the spawning stock in this area was about 9.5 . 103 t and the commercial stock about 14.0 . 103 t. Since that time, trend to decreasing is observed, with the spawning stock 3.6 . 103 t and the commercial stock 5.6 . 103 t in 2013, and recent stabilization at the low level with slight decline continuing. A possible reason of the sharp increase in 2000s could be the intensive transport of the atka mackerel juveniles from the main spawning grounds at Aleutian Islands to the area at Cape Olyutorsky. The catches of atka mackerel in the Olyutorsky-Navarinsky area in 1994–2018 corresponded well with its stock dynamics.


<em>Abstract.</em>—This report summarizes biological, fishery, and survey information on giant grenadier, <em>Albatrossia pectoralis</em>, in Alaskan waters. Catch estimates of giant grenadier in Alaska for the years 1997–2005 have averaged over 16,000 metric tons (mt), and most of this catch has been taken as bycatch in longline fisheries for sablefish, <em>Anoplopoma fimbria</em>, and Greenland halibut, <em>Reinhardtius hippoglossoides</em>. The giant grenadier catch is all discarded, and none of the fish survive due to the pressure change when they are brought to the surface. Most of the catch is from the Gulf of Alaska. Data from bottom trawl and longline surveys in Alaska indicate that giant grenadier are extremely abundant in depths 300–1,000 m, and it appears this species is very important ecologically in this environment. Greatest abundance is in the western Gulf of Alaska, eastern Aleutian Islands, and in some areas of the eastern Bering Sea; abundance declines in the eastern Gulf of Alaska. Relative abundance of giant grenadier is much higher off Alaska than off the U.S. West Coast. Fish in the eastern Bering Sea and Aleutian Islands were consistently larger than those in the Gulf of Alaska. Mean size of females was larger in shallower water, and decreased with depth. Females and males appear to have different depth distributions, with females greatly predominating in depths less than 800 m. Although sex composition of giant grenadier caught in the fishery is unknown, nearly all the fishing effort is believed to be in waters less than 800 m, which indicates females are disproportionately harvested. Because of the great abundance of giant grenadier in Alaska and the relatively modest catch, overfishing of giant grenadier does not appear to be a problem at present. However, because information on the population dynamics of giant grenadier is very sparse, and because of the 100% discard mortality, the disproportionate harvest of females, and the general susceptibility of deep-sea fish to overharvest, fishery managers should monitor this species closely if catches increase in the future.


Sign in / Sign up

Export Citation Format

Share Document