Marine Habitat Mapping Technology for Alaska

2008 ◽  
pp. 1-12 ◽  
Author(s):  
JR Reynolds ◽  
HG Greene ◽  
D Woodby ◽  
J Kurland ◽  
B Allee

Author(s):  
Renato Guimarães de Oliveira ◽  
José Maria Landim Dominguez ◽  
Ivan Cardoso Lemos ◽  
Carla Maria Menegola da Silva

Author(s):  
M. Doukari ◽  
K. Topouzelis

Abstract. Marine habitat mapping is essential for updating existing information, preserving, and protecting the marine environment. Unmanned Aerial Systems (UAS) are an important tool for monitoring and mapping coastal and marine environment because of their ability to provide very high-resolution aerial imagery.Environmental conditions have a critical role in marine mapping using UAS. This is due to the limitations of UAS surveys in coastal areas, i.e. the environmental conditions prevailing in the area. The limitations of weather and oceanographic conditions affecting the quality of marine data led to the creation of a UAS protocol for the acquisition of reliable marine information. The produced UAS Data Acquisition Protocol consists of three main categories: (i) Morphology of the study area, (ii) Environmental conditions, (iii) Flight parameters. These categories include the parameters that must be considered for marine habitat mapping.The aim of the present study is the accuracy assessment of the UAS protocol for marine habitat mapping through experimental flights. For the accuracy assessment of the UAS protocol, flights on different dates and environmental conditions were conducted, over a study area. The flight altitude was the same for all the missions, so the results were comparable. The high-resolution orthophoto maps derived from each date of the experiment were classified. The classification maps show several differences in the shape and size of the marine habitats which are directly dependent on the conditions that the habitats were mapped. A change detection comparison was conducted in pairs to examine the exact changes between the classified maps.The results emphasize the importance of the environmental conditions prevailing in an area during the mapping of marine habitats. The present study proves that the optimal flight conditions that are proposed of the UAS Data Acquisition protocol, respond to the real-world conditions and are important to be considered for an accurate and reliable mapping of the marine environment.


2018 ◽  
Vol 168 ◽  
pp. 39-47 ◽  
Author(s):  
Karen Boswarva ◽  
Alyssa Butters ◽  
Clive J. Fox ◽  
John A. Howe ◽  
Bhavani Narayanaswamy

2018 ◽  
Vol 76 (1) ◽  
pp. 10-22 ◽  
Author(s):  
James Asa Strong ◽  
Annika Clements ◽  
Helen Lillis ◽  
Ibon Galparsoro ◽  
Tim Bildstein ◽  
...  

Abstract The production of marine habitat maps typically relies on the use of habitat classification schemes (HCSs). The choice of which HCS to use for a mapping study is often related to familiarity, established practice, and national desires. Despite a superficial similarity, HCSs differ greatly across six key properties, namely, purpose, environmental and ecological scope, spatial scale, thematic resolution, structure, and compatibility with mapping techniques. These properties impart specific strengths and weaknesses for each HCS, which are subsequently transferred to the habitat maps applying these schemes. This review has examined seven HCSs (that are commonly used and widely adopted for national and international mapping programmes), over the six properties, to understand their influence on marine habitat mapping. In addition, variation in how mappers interpret and apply HCSs introduces additional uncertainties and biases into the final maps. Recommendations are provided for improving HCSs for marine habitat mapping as well as for enhancing the working practices of mappers using habitat classification. It is hoped that implementation of these recommendations will lead to greater certainty and usage within mapping studies and more consistency between studies and adjoining maps.


Sign in / Sign up

Export Citation Format

Share Document