submarine canyons
Recently Published Documents


TOTAL DOCUMENTS

450
(FIVE YEARS 80)

H-INDEX

46
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Nan Wu ◽  
Harya Nugraha ◽  
Michael Steventon ◽  
Fa Zhong

The architecture of canyon-fills can provide a valuable record of the link between tectonics, sedimentation, and depositional processes in submarine settings. We integrate 3D and 2D seismic reflection data to investigate the dominant tectonics and sedimentary processes involved in the formation of two deeply buried (c. 500 m below seafloor), and large (c. 3-6 km wide, >35 km long) Late Miocene submarine canyons. We found the plate tectonic-scale events (i.e. continental breakup and shortening) have a first-order influence on the submarine canyon initiation and evolution. Initially, the Late Cretaceous (c. 65 Ma) separation of Australia and Antarctica resulted in extensional fault systems, which then formed stair-shaped paleo-seabed. This inherited seabed topography allowed gravity-driven processes (i.e. turbidity currents and mass-transport complexes) to occur. Subsequently, the Late Miocene (c. 5 Ma) collision of Australia and Eurasia, and the resulting uplift and exhumation, have resulted in a prominent unconformity surface that coincides with the base of the canyons. We suggest that the Late Miocene intensive tectonics and associated seismicity have resulted in instability in the upper slope that consequently gave rise to emplacement of MTCs, initiating the canyons formation. Therefore, we indicate that regional tectonics play a key role in the initiation and development of submarine canyons.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marcos V. B. Silva ◽  
Tereza C. M. Araújo

Submarine canyons have a relevant role in marine ecosystems. They are responsible for oceanographic conditions such as variability of temperature and salinity, sediment transport, nutrients, and even pollutants amongst marine areas. Submarine canyon studies have been growing and reaching prominence due to their importance in the Blue Economy. Initiatives to promote sustainable development for the ocean have been discussed in the Ocean Decade. Although canyons studies are increasing, how can we integrate these with the Ocean Decade outcomes? Thus, we aim to demonstrate an overview of the advances of submarine canyons studies and their link to the Ocean Decade for South America. We analyzed 160 studies divided into spatiotemporal analysis and study approaches according to the Ocean Decade outcomes. We discuss these articles, building a timeline and argumentative topics considering the advances, and discuss gaps to predict the future of submarine canyons studies in the Ocean Decade and Blue Economy context.


2021 ◽  
Vol 9 (11) ◽  
pp. 1296
Author(s):  
Cheng-Shing Chiang ◽  
Ho-Shing Yu

There are four shelf-incising submarine canyons off SW Taiwan. They are distributed along the active continental margin, which is periodically flushed by gravity flows. Shelf-incising canyons, such as Kaoping Canyon, may not only be affected by oceanographic conditions but also by extreme climate change due to the direct input of river sediment. In the canyons along the SW margin of Taiwan, strong sedimentary flows are reflected in highly abundant nutrient input and physical disturbances. The Kaoping Canyon possesses habitats that promote biodiversity but that are sensitive to environmental change. The aims of this study are to review the canyons along the SW margin of Taiwan and to present their geomorphological features and associated ecosystems.


2021 ◽  
Author(s):  
◽  
Richard Howard Herzer

<p>The Late Quaternary stratigraphy and sedimentary processes are interpreted for an area of continental shelf and slope on the eastern side of the South Island, New Zealand, between latitudes 43°00's and 44°50's. Two formations are recognised in the Late Quaternary stratigraphy of the shelf: the Canterbury Bight Formation of mainly Last Glacia1 age and, locally overlying it, the Pegasus Formation of mainly Holocene age. The formations are distinguished by shelf-wide unconformities (visib1e in seismic profiles), by geomorphology, by grain-size modes, and by macrofauna. Ridge-and-swa1e topography occurs on two scales on the shelf. Very large ridges and troughs are interpreted from microbathymetry, stratigraphy, sediments and macrofauna to be the remains of Pleistocene barrier/lagoon complexes. With the aid of radiocarbon dates, four well developed shorelines between 28,000 yr and 15,000 yr old are recognised. The smaller ridges are submarine features, formed by strong currents. Those ridges that are in a zone of constricted and accelerated currents near Banks Peninsula are active, while those well removed from the peninsula constriction are fossil and date from times of lower sea level. Sedimentation on the continental shelf has reached a state of equilibrium with the modern hydraulic regime. Relict sediments of the deglacial transgressive sand/gravel sheet are being reworked in zones of high energy, principally in the region of constricted flow around Banks Peninsula. Modern-input sand (distinguished by its grain-size mode) is restricted by currents mainly to an active belt near shore, but locally it has replaced palimpsest sand on the middle shelf. The modern mud facies, being confined by zones of higher energy, has reached its maximum areal extent; its greatest thickness is in Pegasus Bay. Sea-bed drifter studies, and studies of sediment texture and provenance show that net sediment movement on the shelf and along shore during both Pleistocene and modern times has been northwards. The continental slope is dissected by submarine slide scars in the south and by submarine canyons in the north. Streams of fine sand, transported from the continental shelf to the upper slope by north-flowing currents during Pleistocene lowered sea levels, initiated the erosion of submarine canyons. Interception of littoral-drifted gravel by established canyons reaching Pleistocene strand lines probably accelerated. canyon erosion. The canyons are thought to be now effectively dormant. Deposition of fine sediment from suspension has dominated the development of the southern slope. This slope is consequently free of deeply corrasional features like submarine canyons but is prone to failure by gravity sliding. The youngest slides are less than 18,000 yr old. The history of growth of Pegasus Submarine Canyon is investigated in detail. The course of the canyon across the shelf is not fault controlled. As well as growing landwards, the canyon and its tributaries have, during Pleistocene sea level stillstands, grown southwards along shore towards the supply of littoral drifted gravel and sand. A buried tributary, of Penultimate Glacial age or older, on the canyon's west side, once brought the canyon 7 km closer to the present shore. The relative ages of the south-trending arms of the canyon are inferred from their relationship to known Last Glacial shorelines that are preserved on the shelf, and by their position with respect to a regional subsurface unconformity of Penultimate Glacial age. Canyon erosion was concentrated in the largest arm during the last deglacial rise of sea level, and shallow channels, interpreted as feeders are common around its rim.</p>


2021 ◽  
Author(s):  
◽  
Richard Howard Herzer

<p>The Late Quaternary stratigraphy and sedimentary processes are interpreted for an area of continental shelf and slope on the eastern side of the South Island, New Zealand, between latitudes 43°00's and 44°50's. Two formations are recognised in the Late Quaternary stratigraphy of the shelf: the Canterbury Bight Formation of mainly Last Glacia1 age and, locally overlying it, the Pegasus Formation of mainly Holocene age. The formations are distinguished by shelf-wide unconformities (visib1e in seismic profiles), by geomorphology, by grain-size modes, and by macrofauna. Ridge-and-swa1e topography occurs on two scales on the shelf. Very large ridges and troughs are interpreted from microbathymetry, stratigraphy, sediments and macrofauna to be the remains of Pleistocene barrier/lagoon complexes. With the aid of radiocarbon dates, four well developed shorelines between 28,000 yr and 15,000 yr old are recognised. The smaller ridges are submarine features, formed by strong currents. Those ridges that are in a zone of constricted and accelerated currents near Banks Peninsula are active, while those well removed from the peninsula constriction are fossil and date from times of lower sea level. Sedimentation on the continental shelf has reached a state of equilibrium with the modern hydraulic regime. Relict sediments of the deglacial transgressive sand/gravel sheet are being reworked in zones of high energy, principally in the region of constricted flow around Banks Peninsula. Modern-input sand (distinguished by its grain-size mode) is restricted by currents mainly to an active belt near shore, but locally it has replaced palimpsest sand on the middle shelf. The modern mud facies, being confined by zones of higher energy, has reached its maximum areal extent; its greatest thickness is in Pegasus Bay. Sea-bed drifter studies, and studies of sediment texture and provenance show that net sediment movement on the shelf and along shore during both Pleistocene and modern times has been northwards. The continental slope is dissected by submarine slide scars in the south and by submarine canyons in the north. Streams of fine sand, transported from the continental shelf to the upper slope by north-flowing currents during Pleistocene lowered sea levels, initiated the erosion of submarine canyons. Interception of littoral-drifted gravel by established canyons reaching Pleistocene strand lines probably accelerated. canyon erosion. The canyons are thought to be now effectively dormant. Deposition of fine sediment from suspension has dominated the development of the southern slope. This slope is consequently free of deeply corrasional features like submarine canyons but is prone to failure by gravity sliding. The youngest slides are less than 18,000 yr old. The history of growth of Pegasus Submarine Canyon is investigated in detail. The course of the canyon across the shelf is not fault controlled. As well as growing landwards, the canyon and its tributaries have, during Pleistocene sea level stillstands, grown southwards along shore towards the supply of littoral drifted gravel and sand. A buried tributary, of Penultimate Glacial age or older, on the canyon's west side, once brought the canyon 7 km closer to the present shore. The relative ages of the south-trending arms of the canyon are inferred from their relationship to known Last Glacial shorelines that are preserved on the shelf, and by their position with respect to a regional subsurface unconformity of Penultimate Glacial age. Canyon erosion was concentrated in the largest arm during the last deglacial rise of sea level, and shallow channels, interpreted as feeders are common around its rim.</p>


Geomorphology ◽  
2021 ◽  
pp. 108047
Author(s):  
Li Wan ◽  
Suzanne Hurter ◽  
Valeria Bianchi ◽  
Tristan Salles ◽  
Zhijie Zhang ◽  
...  

2021 ◽  
Vol 172 ◽  
pp. 112861
Author(s):  
Sarah Paradis ◽  
Claudio Lo Iacono ◽  
Pere Masqué ◽  
Pere Puig ◽  
Albert Palanques ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document