Viscoelastic Analysis of Adhesively Bonded Double – Lap Joint

Author(s):  
Sang Soon Lee
1981 ◽  
Vol 48 (2) ◽  
pp. 331-338 ◽  
Author(s):  
F. Delale ◽  
F. Erdogan

In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.


2007 ◽  
Vol 345-346 ◽  
pp. 1473-1476
Author(s):  
Sang Soon Lee

In this paper, stress distribution in a double lap joint subjected to a tensile load is investigated using the boundary element method. The adhesive used in this study is a commercial epoxy system which can be cured at room temperature. The adhesive is assumed to be linearly viscoelastic. The order of the singularity is obtained numerically for a given viscoelastic model. The numerical results show that interface stresses are large enough to initiate local yielding or edge cracks. Since the exceedingly large stresses cannot be borne by the adhesive layer, edge cracks can occur at the interface corner.


1987 ◽  
Vol 27 (4) ◽  
pp. 445-454 ◽  
Author(s):  
S. Yadagiri ◽  
C.Papi Reddy ◽  
T.Sanjeeva Reddy

Sign in / Sign up

Export Citation Format

Share Document