Cyclic Plastic Response and Fatigue Life of Materials

Author(s):  
Jaroslav Polák
2011 ◽  
Vol 10 ◽  
pp. 568-577 ◽  
Author(s):  
J. Polák ◽  
M. Petrenec ◽  
T. Kruml ◽  
A. Chlupová

2007 ◽  
Vol 348-349 ◽  
pp. 113-116 ◽  
Author(s):  
Jaroslav Polák

Recently the decisive role of plastic strain amplitude for the initiation and the growth rate of short cracks has been demonstrated. The plastic strain amplitude can be related to the rate of short crack growth and also to the fatigue life. Since the cyclic stress-strain response of a material determines the plastic strain amplitude it influences basically its fatigue life. The experiments in stress and plastic strain controlled loading and short crack growth are presented and used to demonstrate the importance of the cyclic plastic response for the evaluation of the fatigue life.


2010 ◽  
Vol 32 (2) ◽  
pp. 279-287 ◽  
Author(s):  
Jaroslav Polák ◽  
Martin Petrenec ◽  
Tomáš Kruml

2003 ◽  
Author(s):  
Tomohiro Hirata ◽  
Toshiaki Nakamaru ◽  
Keisuke Toyama ◽  
Shuichi Magara ◽  
Hiroshi Watanabe ◽  
...  

Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

Work hardening and Bauschinger effects on plastic deformation and fatigue life for a beam and an elbow under cyclic loading are examined using finite element analysis (FEA). Three typical material plastic hardening models, i.e. isotropic, kinematic and combined isotropic/kinematic hardening models are adopted in the FEA calculations. Based on the FEA results of cyclic stress and strain at a critical location and using an energy-based fatigue damage parameter, the fatigue lives are predicted for the beam and elbow. The results show that (1) the three material hardening models determine similar stress at the critical location with small differences during the cyclic loading, (2) the isotropic model underestimates the cyclic plastic strain and overestimates the fatigue life, (3) the kinematic model overestimates the cyclic plastic strain and underestimates the fatigue life, and (4) the combined model predicts the intermediate cyclic plastic strain and reasonable fatigue life.


Author(s):  
Y. Namita ◽  
K. Suzuki ◽  
H. Abe ◽  
I. Ichihashi ◽  
M. Shiratori ◽  
...  

In FY 2000, a 3-year testing program of eroded piping was initiated with the following objectives: 1) to ascertain the seismic safety margins for eroded piping designed under the current seismic design code, 2) to clarify the elasto-plastic response and ultimate strength of eroded nuclear piping. A series of tests on eroded piping components and eroded piping systems was planned. In this paper, the results of those tests are presented and analyzed, focusing on the influence of the form and the number of thinned-wall portions on the fatigue life of the piping.


2014 ◽  
Vol 74 ◽  
pp. 68-73 ◽  
Author(s):  
Jaroslav Polák ◽  
Roman Petráš ◽  
Milan Heczko ◽  
Tomáš Kruml ◽  
Guocai Chai

Sign in / Sign up

Export Citation Format

Share Document