Influence of Loading Frequency on Fatigue Behavior of High Strength Steel

Author(s):  
Nu Yan ◽  
Qing Yuan Wang ◽  
Q. Chen ◽  
J.J. Sun
2007 ◽  
Vol 353-358 ◽  
pp. 227-230 ◽  
Author(s):  
Nu Yan ◽  
Qing Yuan Wang ◽  
Q. Chen ◽  
J.J. Sun

In order to investigate the influence of loading frequency on the fatigue behaviors of the high strength steel, ultrasonic fatigue tests were carried out for a high-carbon-chromium steel and the results were compared with those of fatigue tests using conventional rotary bending fatigue test machine with a frequency of 52.5Hz. The different of fatigue strength at ultrasonic frequency level and conventional frequency level is very small and the S-N curve obtained from 20 kHz or 52.5 Hz shows the step-wise shape. The fatigue crack occurred from inclusions on the subsurface site in the long life regime and the typical surface fracture occurred in the short life one though the loading frequency level is different. It is indicated that ultrasonic fatigue method is an effective method to investigate the fatigue properties in super-long life region.


1977 ◽  
Vol 1977 (142) ◽  
pp. 236-244
Author(s):  
Kinichi Nagai ◽  
Mitsumasa Iwata ◽  
Kenhichiro Kurihara ◽  
Junkichi Yagi ◽  
Yasumitsu Tomita

2020 ◽  
Vol 131 ◽  
pp. 105380 ◽  
Author(s):  
J. Ajaja ◽  
W. Jomaa ◽  
P. Bocher ◽  
R.R. Chromik ◽  
M. Brochu

2019 ◽  
Vol 300 ◽  
pp. 16004
Author(s):  
Luis Pallarés-Santasmartas ◽  
Joseba Albizuri ◽  
Nelson Leguinagoicoa ◽  
Nicolas Saintier ◽  
Jonathan Merzeau

The present study consists of a theoretical, experimental and fractographic investigation of the effect of superimposed static axial and shear stresses on the high cycle fatigue behavior of a 34CrNiMo6 high strength steel in quenched and tempered condition (UTS = 1210 MPa), commonly employed in highly stressed mechanical components. The Haigh diagrams for the axial and torsional cases under different values of mean stress were obtained. In both cases, experimental results showed that increasing the mean stress gradually reduces the stress amplitude that the material can withstand without failure. The results of the present tests are compared with the theoretical predictions from Findley, based on the maximum damage critical plane; and the methods of Marin and Froustey, which are energetic based criterions. Froustey’s method shows the best agreement with experimental results for torsional fatigue with mean shear stresses, showing a non-conservative behaviour for the axial fatigue loading case. Macro-analyses and micro-analyses of specimen fracture appearance were conducted in order to obtain the fracture characteristics for different mean shear stress values under torsion fatigue loading.


2020 ◽  
Vol 841 ◽  
pp. 294-299
Author(s):  
Sergio Lorenzi ◽  
Cristian Testa ◽  
Marina Cabrini ◽  
Francesco Carugo ◽  
Luigi Coppola ◽  
...  

The paper is aimed to the study of the corrosion-fatigue behavior of high strength steels for offshore pipelines. Tests have been performed in order to study fatigue crack growth in synthetic seawater under cathodic protection. The tests have been carried out on three different steel grades from 65 to 85 ksi with tempered martensite and ferrite-bainite microstructures. The effect of stress intensity factor, cathodic protection potential and cyclic loading frequency is shown.


Sign in / Sign up

Export Citation Format

Share Document