synthetic seawater
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 23)

H-INDEX

24
(FIVE YEARS 2)

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 969
Author(s):  
Reza Sallakhniknezhad ◽  
Manijeh Khorsi ◽  
Ali Sallakh Niknejad ◽  
Saeed Bazgir ◽  
Ali Kargari ◽  
...  

Insufficient mechanical strength and wide pore size distribution of nanofibrous membranes are the key hindrances for their concrete applications in membrane distillation. In this work, various post-treatment methods such as dilute solvent welding, vapor welding, and cold-/hot-pressing processes were used to enhance the physical properties of styrene–acrylonitrile (SAN) nanofiber membranes fabricated by the modified electrospinning process. The effects of injection rate of welding solution and a working distance during the welding process with air-assisted spraying on characteristics of SAN nanofiber membranes were investigated. The welding process was made less time-consuming by optimizing system parameters of the electroblowing process to simultaneously exploit residual solvents of fibers and hot solvent vapor to reduce exposure time. As a result, the welded SAN membranes showed considerable enhancement in mechanical robustness and membrane integrity with a negligible reduction in surface hydrophobicity. The hot-pressed SAN membranes obtained the highest mechanical strength and smallest mean pore size. The modified SAN membranes were used for the desalination of synthetic seawater in a direct contact membrane distillation (DCMD). As a result, it was found that the modified SAN membranes performed well (>99.9% removal of salts) for desalination of synthetic seawater (35 g/L NaCl) during 30 h operation without membrane wetting. The cold-/hot-pressing processes were able to improve mechanical strength and boost liquid entry pressure (LEP) of water. In contrast, the welding processes were preferred to increase membrane flexibility and permeation.


MRS Advances ◽  
2021 ◽  
Author(s):  
M. S. Merino-Duran ◽  
M. Estévez ◽  
G. Carbajal-De la Torre ◽  
A. R. Hernández-Martínez ◽  
R. Esparza ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 23
Author(s):  
Albert Barrabino ◽  
Torleif Holt ◽  
Bård Bjørkvik ◽  
Erik Lindeberg

An oscillating drop rheometer capable of operating under conditions of high pressure and high temperature has been built. The oscillating drop mechanism was able to support pressures as high as 1300 bar and successfully performed oscillations at constant pressure. Apparent elastic and viscous complex moduli were measured for a system of CO2 and synthetic seawater containing 100 ppm of a linear alkyl ethoxylate surfactant for different pressures and temperatures. The moduli had strong dependencies on both pressure and temperature. At temperatures of 40 and 80 °C, the apparent elastic modulus passed through a maximum for pressures between 100 and 300 bar. The harmonic distortion of the oscillations was calculated for all measurements, and it was found that drop oscillations below ca. 2.6 µL caused distortions above 10% due to a mechanical backlash of the motor.


2021 ◽  
Author(s):  
◽  
Usman Mohammed Aliyu

Accessibility to potable water worldwide is threatene, despite 71% of the earth’s surface being covered with water. However, 97% of the 71% is too saline for consumption. A usual way of treating salinity is by membrane desalination using reverse osmosis. The disadvantage of this approach is its high cost and short life span of the polymeric membrane used. Creating a new robust high-quality water treatment system using a ceramic membrane will address these challenges due to its robust mechanical properties. In this work, we synthesized different zeolites from South African kaolin under varying conditions such as crystallization time, ageing time and temperature and their effects on the properties of zeolites synthesized was investigated. Sample characterization confirmed the successful synthesis of ZSM-5 and zeolite A. In the synthesis procedure, metakaolin served as the alternative source of silica and alumina and was use to synthesize different types of zeolites under varying synthesis conditions. Synthesized samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Brunauer–Emmett–Teller BET surface area. The properties of the synthesized ZSM-5 were influence by the synthesis parameters, typically, crystallization temperature, ageing time and crystallization time. Crystalline ZSM-5 zeolite produced at an ageing time of 24 hours, crystallization time of 48 hours and crystallization temperature of 180°C with Si/Al ratio of 43 and BET surface area of 282 m2 /g. After a 12-hour ageing period, Zeolite A produced at crystallization time of 20 hours, the crystallization temperature of 100°C, Si/Al ratio of 1.3 and BET surface area of 143.88 m2 /g. The findings indicate that aging influences the synthesis of zeolite A, as a relatively crystalline material formed at an ageing time of 12 hours, which continued to decrease as the ageing time was increased. We do not exclude the possibility of Ostwald ripening playing a role in this relationship. Subsequently, the efficiency of zeolite A and ZSM-5 zeolite in removing salt ions, Ca2+, K+ , Mg2+ , and Na+ from synthetic seawater was investigated at room temperature using a batch adsorption system. The effect of adsorbent dosage, agitation speed and contact time were consider. Dosages varied from 2.5 to 6.0 g/100 ml while the contact time varied from 30 to 180 minutes. The results obtained showed that a zeolite dosage of 6.0g/100 ml and agitation speed of 140 revolutions per minute (rpm) yielded a maximum removal efficiency of 89.7 % for Ca2+ and minimum removal efficiency of 1.8 % for Mg2+ at agitation rates of 30 and 120 minutes, respectively. Ion exchange of Na+ by Ca2+, K+ and Mg2+ in the zeolite framework was established. The preference of the overall ion-exchange selectivity of both zeolites A and ZSM-5 are in the order of Ca2+ > K+ > Na+ > Mg2+. Zeolite A showed higher removal efficiency compared to ZSM-5 zeolite. The results point out that the synthesized zeolite was able to desalinate the salt ions in synthetic seawater to a limit below the World Health Organization (WHO) recommended values. Consequently, zeolite synthesized from kaolin offers a cost-effective technology for the desalination of seawater. The desalination and material characterization results used in selecting a potential zeolite for use in reverse osmosis (RO). The material successfully deposited on etched alpha-alumina support to produce zeolite membrane by a hydrothermal technique using a modified in-situ method. Zeolite A and ZSM-5 membranes produced and applied in the RO unit for desalination. The RO membrane experimental results show potential in desalination of synthetic seawater. A machine-learning tool was use to predict the properties of the synthesized ZSM-5 as a function of the hydrothermal parameters. Finally, a techno-economic analysis of synthesizing zeolite using locally available kaolin at a capacity of 5 x 105 kg/yr. has shown that the plant is economically viable with rapid break-even and the payback period is less than 4 years.


Geology ◽  
2020 ◽  
Author(s):  
Sascha Roest-Ellis ◽  
Justin V. Strauss ◽  
Nicholas J. Tosca

Precambrian carbonates record secular variations in the style of CaCO3 nucleation and growth, yet the geochemical conditions recorded by some enigmatic textures remain poorly quantified. Here, we performed CaCO3 nucleation experiments in synthetic seawater in order to constrain the mineralization pathways of synsedimentary calcite microspar cement, a prolific component of Proterozoic carbonates. We found that dissolved PO4 above ~12 μmol/L (μM) inhibits the nucleation of aragonite and calcite and permits the formation of an amorphous Ca-Mg carbonate (ACMC) precursor once CaCO3 supersaturation (Ωcal) is ≥ 45. Depending on seawater Mg/Ca, ACMC then rapidly recrystallizes to monohydrocalcite and/or calcite. This precipitation mechanism is consistent with sedimentological, petrographic, and geochemical characteristics of Proterozoic synsedimentary calcite microspar cement, and it suggests that kinetic interactions among common seawater ions may open nontraditional CaCO3 mineralization pathways and sustain high CaCO3 supersaturation.


2020 ◽  
Vol 8 (12) ◽  
pp. 996
Author(s):  
Annie Vera Hunnestad ◽  
Anne Ilse Maria Vogel ◽  
Maria Guadalupe Digernes ◽  
Murat Van Ardelan ◽  
Martin Frank Hohmann-Marriott

Cyanobacteria have high iron requirements due to iron-rich photosynthetic machineries. Despite the high concentrations of iron in the Earth’s crust, iron is limiting in many marine environments due to iron’s low solubility. Oxic conditions leave a large portion of the ocean’s iron pool unavailable for biotic uptake, and so the physiochemical properties of iron are hugely important for iron’s bioavailability. Our study is the first to investigate the effect of iron source on iron internalization and extracellular reduction by Synechococcus sp. PCC 7002. The results indicated that the amorphous iron hydrolysis species produced by FeCl3 better support growth in Synechococcus through more efficient iron internalization and a larger degree of extracellular reduction of iron than the crystalline FeO(OH). An analysis of dissolved iron (II) indicated that biogenic reduction took place in cultures of Synechococcus grown on both FeCl3 and FeO(OH).


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 991
Author(s):  
María P. Arancibia-Bravo ◽  
Alejandro López-Valdivieso ◽  
Luís F. Flores ◽  
Luís A. Cisternas

This study demonstrates the effects of a potassium propyl xanthate (PPX) collector and sodium sulfite (Na2SO3) depressant on pure chalcopyrite in synthetic seawater (SSW) and potassium chloride (KCl) solutions. SSW solutions with 35 g/L of salt and 0.01-M KCl were used for microflotation and zeta potential tests. Particles sized between 200# and 100# (75–150 µm) were used, and the pH was between 8.0 and 8.5. The surface of the mineral and its interaction with the collector were characterized using Raman spectrometry. The zeta potential of the chalcopyrite was measured in KCl solution at a pH range of 3–12 using the collector and depressant at a monodispersed particle size of 635# (20 µm). The results indicate that the floatability of chalcopyrite is not affected by the presence of PPX collectors in SSW solutions. SSW provides better recoveries than KCl solutions with values of 91.42% and 88.15%, respectively. The Na2SO3 depressant does not hinder the mineral floatability throughout the entire concentration range used; however, special care must be taken when adjusting the pH range to avoid increasing the zeta potential.


Sign in / Sign up

Export Citation Format

Share Document