Real-Time Displacement Monitoring System for High Temperature Steam Pipe of Fossil Power Plant

Author(s):  
Jung Seob Hyun ◽  
Gee Wook Song ◽  
Sun Young Cho ◽  
Young Shin Lee
2021 ◽  
Vol 9 (2) ◽  
pp. 27-36
Author(s):  
Sheikh Hasib Cheragee ◽  
Nazmul Hassan ◽  
Sakil Ahammed ◽  
Abu Zafor Md. Touhidul Islam

We have Developed an IoT-based real-time solar power monitoring system in this paper. It seeks an opensource IoT solution that can collect real-time data and continuously monitor the power output and environmental conditions of a photovoltaic panel.The Objective of this work is to continuously monitor the status of various parameters associated with solar systems through sensors without visiting manually, saving time and ensures efficient power output from PV panels while monitoring for faulty solar panels, weather conditionsand other such issues that affect solar effectiveness.Manually, the user must use a multimeter to determine what value of measurement of the system is appropriate for appliance consumers, which is difficult for the larger System. But the Solar Energy Monitoring system is designed to make it easier for users to use the solar system.This system is comprised of a microcontroller (Node MCU), a PV panel, sensors (INA219 Current Module, Digital Temperature Sensor, LDR), a Battery Charger Module, and a battery. The data from the PV panels and other appliances are sent to the cloud (Thingspeak) via the internet using IoT technology and a Wi-Fi module (NodeMCU). It also allows users in remote areas to monitor the parameters of the solar power plant using connected devices. The user can view the current, previous, and average parameters of the solar PV system, such as voltage, current, temperature, and light intensity using a Graphical User Interface. This will facilitate fault detection and maintenance of the solar power plant easier and saves time.


2012 ◽  
Vol 549 ◽  
pp. 519-522
Author(s):  
Yu Chun Li ◽  
Ya Jiang ◽  
Heng Zheng ◽  
Xiao Wei Liu

Automatic supervision of chemical dosing system was developed in fossil power plant by use of ADAM 6050 module and Advantech WebAccess. Communication configuration must be accorded with Bus protocol and device type; the system is confirmed to achieve stability and real-time performance after practical application.


Author(s):  
Gang Zhao ◽  
Ping Ye ◽  
Jie Wang ◽  
Xiaoyong Yang

The massive use of fossil fuel has caused huge carbon emission and serious air pollution in China. Now all kinds of alternative energy technology are developing rapidly to solve such problem in China. Electricity produced by non-fossil fuel energy is continued to increase sharply in China. But it’s hard for regular alternative energy, such as wind power, solar power, hydroelectricity power, nuclear power and so on, to easily provide process heat for industry, especially high temperature steam. High temperature Gas-cooled Reactor (HTGR, sometimes also called HTR) is a kind of nuclear reactor, which are demonstrated very high efficiencies, safety and availability features by American and German power plant. HTR differs from water nuclear reactors by offering a high thermal efficiency for electricity generation and a high level of passive safety features. Now HTR-PM project is built in Shidao Bay of China. Moreover, HTR is the only nuclear reactor, which can provide high temperature steam comparing with other water nuclear reactors. So HTR can provide a versatile cogeneration solution for industry. In this paper, a case was studied, how to provide heat for a refinery and petro-chemical plant with HTR. Firstly, the energy need of a typical large chemical plant in china was investigated. Steam supply diagram of an oil refinery plant, which produced 10 million tons oil products and 1 million tons ethylene in China, was calculated. Secondly, technical feasibility of energy providing by HTR cogeneration plant was discussed. Extraction steam from HTR system was designed for the chemical plant. It would meet the requirement of steam supply for chemical plant and would replace the captive power plant, where coal was burning. The balance of steam, enthalpy and temperature was calculated. At last, economic evaluation for such cogeneration plants was carried out. The steam supply cost from captive coal power plant and HTR cogeneration plant was compared. Some economical conclusion was made from the discussion.


Sign in / Sign up

Export Citation Format

Share Document