Bonds of Electroplated Diamond Tools for Optical Glass Machining

Author(s):  
Ai Bing Yu ◽  
A.J. Wang ◽  
C.G. Luan ◽  
S.F. Chen
Keyword(s):  
2010 ◽  
Author(s):  
A. J. Wang ◽  
C. G. Luan ◽  
A. B. Yu
Keyword(s):  

1976 ◽  
Vol 23 (9) ◽  
pp. 709-722 ◽  
Author(s):  
D.F. Horne ◽  
E. Loh
Keyword(s):  

2006 ◽  
Vol 304-305 ◽  
pp. 81-84
Author(s):  
Ai Bing Yu ◽  
A.J. Wang ◽  
C.G. Luan ◽  
S.F. Chen

Bonds of electroplated diamond tools are investigated through the studies of microstructures and properties. Three coatings for tool bonds, nickel, nickel-cobalt and bright nickel, were fabricated with electrodeposition processes, and were heat-treated with different temperatures. The hardness and microstructures of coatings were measured and observed. Optical glass K9 was machined with fabricated electroplated diamond tools to compare material removal rate and grinding ratio. The grain sizes of three bond coatings are different. The laminar structures of nickel-cobalt and bright nickel coatings turn to fine columnar structure after heat treatment processes. With heat treatment of 200°C temperature, bright nickel electroplated diamond tool presents highest values of material removal rate and grinding ratio. The research results show that better microstructures and property of bond for electroplated diamond tool can be obtained by selecting proper electroplating technology and heat treatment processes.


2020 ◽  
Vol 86 (6) ◽  
pp. 62-71
Author(s):  
P. P. Sharin ◽  
S. P. Yakovleva ◽  
M. P. Akimova ◽  
V. I. Popov

The results of studying fundamental and applied problems regarding the formation of boundary layers between diamond and carbide matrix are presented with the goal to develop a highly resistant diamond tool. The new approaches to the synthesis of diamond-carbide materials combining diamond metallization and sintering in a single-stage technology are presented. The developed technology eliminates the re-heating of a metallized coatings which results in their destruction and enhanced graphitization of diamond (these phenomena restrict using metallization procedure to improve diamond retention and synthesis of high-functional composites for diamond tools). The goal of the study is analysis the structural and phase state of the «diamond – carbide matrix» interface in a diamond tool obtained by the new technology and the main factors determining the level of diamond retention in the presence of a metallized coating. Unique opportunities provided by modern high-resolution methods of research were used in the study. The elemental composition and morphological features of the diamond-matrix interface were studied using the methods of scanning electron microscopy, atomic force microscopy, X-ray microanalysis and Raman spectroscopy. Identification of the reaction products, including non-diamond carbon was performed. It is shown that the introduction of the powder-metallizer significantly modified the contact boundaries and provide conditions for improving the chemical and mechanical adhesion of the diamond-matrix system. The formation of the well-developed nano- and sub-microscale roughness of the diamond surface and dense filling of the existing voids with nanoscale layers of metal-infiltrate was revealed. The multilevel organization of highly structured elements of the transition zone with the minimal graphitization ensured the monolithic character and strength of the diamond-matrix bond. Comparative service tests of preproduction and control samples of diamond dressers proved the efficiency of developed hybrid technology (the specific performance of diamond tools increased by 39 – 45%). New fundamental and applied results have been obtained in the field of studying interface zones in crystalline multiphase systems that can be used to regulate adhesion phenomena at the interphase boundaries and develop highly efficient composite materials.


2020 ◽  
Vol 1697 ◽  
pp. 012156
Author(s):  
V Bukina ◽  
O Dymshits ◽  
I Alekseeva ◽  
M Tsenter ◽  
S Zapalova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document