mechanical adhesion
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 32)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Sungyu Choi ◽  
Sang-Hun Shin ◽  
Dong-Hyun Lee ◽  
Gisu Doo ◽  
Dong Wook Lee ◽  
...  

Cerium oxide-containing interlocking interfacial layer improved mechanical adhesion and chemical stability of the interface. For the first time as a hydrocarbon-based membrane, it operated stably for more than 500 hours.


2021 ◽  
Vol 20 (6) ◽  
pp. 482-486
Author(s):  
V. A. Ivanov ◽  
V. V. Krasovskii ◽  
V. F. Gremenok ◽  
L. I. Postnova

Alloys of lead and tin telluride (PbxSn1–xTe) are materials with good thermoelectric properties, as well as semiconductors that can be used as long-wave infrared detectors. Polycrystalline telluride of PbxSn1–xTe (0.05 £ x £ 0.80) alloys has been synthesized by direct fusion technique. Thin films of these materials have been obtained by the hot wall method depositing Сorning 7059 on glass substrates at Tsub = (200–350) oC and vacuum of about 10–5 Torr. The microstructure of the films has been investigated by XRD, SEM and EDX methods. The X-ray spectra of thin films have been in satisfactorily agreement with the spectra of the powder target and indicated the absence of binary phases. The films have shown a natural cubic crystalline structure. While increasing the lead content, the unit cell parameter of the crystal also increases. The established linear relationship between the unit cell parameter and the elemental composition corresponds to Vegard's law. The SEM analysis has shown that the films are polycrystalline, have a columnar structure, are tightly packed and have good mechanical adhesion. The grain size depends on the chemical composition and temperature of the substrate. The electrical measurements have shown that the grown films are non-degenerate semiconductors of p-type conductivity. The conductivity of the films was in the range of σ = (3 × 101)–(1 × 104) Ω–1×cm–1. An increase of lead concentration leads to a decrease in electrical conductivity. Hall mobility in the grown thin films increases in the range of changes in the lead content from ~10 to ~23 at. %, and decreases with a further increase to ~33 at. %. At the same time, the strongest dependence of the decrease in mobility on an increase in temperature increase is observed for films with a high lead content and is explained by the predominant scattering of charge carriers by vibrations of the crystal lattice. For a sample with an average lead concentration, an alternative effect of two scattering mechanisms is observed in the temperature dependence of the mobility: by impurity ions and by phonons.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3114
Author(s):  
Sarianna Palola ◽  
Farzin Javanshour ◽  
Shadi Kolahgar Azari ◽  
Vasileios Koutsos ◽  
Essi Sarlin

Aramid fibers are high-strength and high-modulus technical fibers used in protective clothing, such as bulletproof vests and helmets, as well as in industrial applications, such as tires and brake pads. However, their full potential is not currently utilized due to adhesion problems to matrix materials. In this paper, we study how the introduction of mechanical adhesion between aramid fibers and matrix material the affects adhesion properties of the fiber in both thermoplastic and thermoset matrix. A microwave-induced surface modification method is used to create nanostructures to the fiber surface and a high throughput microbond method is used to determine changes in interfacial shear strength with an epoxy (EP) and a polypropylene (PP) matrix. Additionally, Fourier transform infrared spectroscopy, atomic force microscopy, and scanning electron microscopy were used to evaluate the surface morphology of the fibers and differences in failure mechanism at the fiber-matrix interface. We were able to increase interfacial shear strength (IFSS) by 82 and 358%, in EP and PP matrix, respectively, due to increased surface roughness and mechanical adhesion. Also, aging studies were conducted to confirm that no changes in the adhesion properties would occur over time.


Author(s):  
Shyamal Chandra Mondal ◽  
Patricio l. C. Marquez ◽  
Mohammad Osman Tokhi

Mmaintenance of wind turbine farms is a huge task, with associated significant risks and potential hazard to the safety and wellbeing of people who are responsible for carrying the tower inspection tasks. Periodic inspections are required for wind turbine tower to ensure that the wind turbines are in full working order, with no signs of potential failure. Therefore, the development of an automated wind tower inspection system has been very crucial for the overall performance of the renewable wind power generation industry. In order to determine the life span of the tower, an investigation of robot design is discussed in this paper. It presents how a mechanical spring-loaded climbing robot can be designed and constructed to climb and rotate 360° around the tower. An adjustable circular shape robot is designed that allows the device to fit in different diameters of the wind generator tower. The rotational module is designed to allow the wheels to rotate and be able to go in a circular motion. The design further incorporates a suspension that allows the robot to go through any obstacle. This paper also presents afiniteelement spring stress analysis and Simulink control system model to find the optimal parameters that are required for the wind tower climbing robot.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1592
Author(s):  
Nuno M. Figueiredo ◽  
Ricardo Serra ◽  
Albano Cavaleiro

The poor adhesion and chemical and thermal stability of plasmonic nanostructures deposited on solid surfaces are a hindrance to the longevity and long-term development of robust localized surface plasmon resonance (LSPR)-based systems. In this paper, we have deposited gold (Au) nanolayers with thicknesses above the percolation limit over glass substrates and have used a thermal annealing treatment at a temperature above the substrate’s glass transition temperature to promote the dewetting, recrystallization, and thermal embedding of Au nanoparticles (NPs). Due to the partial embedding in glass, the NPs were strongly adherent to the surface of the substrate and were able to resist to the commonly used cleaning procedures and mechanical adhesion tests alike. The reflectivity of the embedded nanostructures was studied and shown to be strongly dependent on the NP size/shape distributions and on the degree of NP embedding. Strong optical scattering bands with increasing width and redshifted LSPR peak position were observed with the Au content. Refractive index sensitivity (RIS) values between 150 and 360 nm/RIU (concerning LSPR band edge shift) or between 32 and 72 nm/RIU (concerning LSPR peak position shift) were obtained for the samples having narrower LSPR extinction bands. These robust LSPR sensors can be used following a simple excitation/detection scheme consisting of a reflectance measurement at a fixed angle and wavelength.


2021 ◽  
pp. 112894
Author(s):  
Su-Bon Kim ◽  
Hyun-Woo Min ◽  
Yong-Bok Lee ◽  
Su-Hyun Kim ◽  
Pan-Kyu Choi ◽  
...  

2021 ◽  
Author(s):  
Julien Avenet ◽  
Steven Le Corre ◽  
Jean-Luc Bailleul ◽  
Arthur Levy

Thermoplastic composites offer new manufacturing prospects, thanks to the ability to melt the matrix. Welding, tape placement, 3D printing, overmoulding, or even stamping involve adhesion of the thermoplastic polymer at high temperature. First, under heat and pressure, contact at the microscopic scale is ensured by the deformation of surface roughness, this is the intimate contact step. Then, the development of the mechanical strength of the assembly is controlled by the diffusion of macromolecules at the interface which is defined as the healing step. Nowadays, continuous manufacturing processes tend to be faster and present very short residence time which could limit the adhesion development. A good understanding of these mechanisms is therefore very important to control and predict such industrial processes. Welding tests at different temperatures and contact pressures were carried out over a large range of residence times using a controlled welding bench enabling very short welding times (down to 1 second). The mechanical adhesion between PEKK-carbon composite samples was characterized using double cantilever beam fracture tests. Adhesion was found to develop in two steps which could be described as an intimate contact-healing coupled step and a pure healing step. From this, the healing kinetics was identified and an empirical model was developed to account for the effect of pressure on adhesion build-up. This model could then be compared with existing models to describe the establishment of intimate contact between the coupons.


2021 ◽  
Author(s):  
Yusu Chen ◽  
Qifeng Wang ◽  
Carolyn Mills ◽  
Johanna Kann ◽  
Kenneth Shull ◽  
...  

<p>High-throughput screening of material mechanical properties has the potential to transform material science research in both aiding in material discovery and developing predictive models. However, the development of these assays is inherently difficult with only a few methods and tools reported, and the mounting demand for enormous material property datasets to develop predictive models is unfulfilled by the limited throughput of the current techniques. In particular, equipment cost and instrument limitations prohibit the widespread generation of large material property datasets. We address this problem by developing a high-throughput colorimetric method for testing mechanical adhesion using a common laboratory centrifuge, multi-well plates and microparticles. The technique uses centrifugation to apply a homogenous mechanical detachment force across the samples in the multi-well plate. We also develop a high-throughput sample deposition method to prepare films with uniform thickness in each well, minimizing well-to-well variability in measurements. Our centrifugal adhesion testing method can differentiate polymer films with variate adhesion strengths and shows excellent agreement with the probe tack adhesion test. To illustrate the throughput and consistency of the overall process, we displayed a pattern on a multi-well plate by depositing two different formulations and performing the centrifugal test. We can achieve a throughput of thousands of samples per run, and it is limited only by the number of wells in the plates. With its simplicity, low cost and large dynamic range, this high-throughput method has the potential to change the landscape of adhesive material characterization.</p>


2021 ◽  
Author(s):  
Yusu Chen ◽  
Qifeng Wang ◽  
Carolyn Mills ◽  
Johanna Kann ◽  
Kenneth Shull ◽  
...  

<p>High-throughput screening of material mechanical properties has the potential to transform material science research in both aiding in material discovery and developing predictive models. However, the development of these assays is inherently difficult with only a few methods and tools reported, and the mounting demand for enormous material property datasets to develop predictive models is unfulfilled by the limited throughput of the current techniques. In particular, equipment cost and instrument limitations prohibit the widespread generation of large material property datasets. We address this problem by developing a high-throughput colorimetric method for testing mechanical adhesion using a common laboratory centrifuge, multi-well plates and microparticles. The technique uses centrifugation to apply a homogenous mechanical detachment force across the samples in the multi-well plate. We also develop a high-throughput sample deposition method to prepare films with uniform thickness in each well, minimizing well-to-well variability in measurements. Our centrifugal adhesion testing method can differentiate polymer films with variate adhesion strengths and shows excellent agreement with the probe tack adhesion test. To illustrate the throughput and consistency of the overall process, we displayed a pattern on a multi-well plate by depositing two different formulations and performing the centrifugal test. We can achieve a throughput of thousands of samples per run, and it is limited only by the number of wells in the plates. With its simplicity, low cost and large dynamic range, this high-throughput method has the potential to change the landscape of adhesive material characterization.</p>


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 331
Author(s):  
Jan Sezemský ◽  
Petr Špatenka

The aim of this study is to investigate a multilayer structure made of polyethylene and polyamide by rotational molding. Due to the different polarity of these polymers, it is difficult to ensure enough adhesion between created layers. Two methods leading to improve adhesion are introduced. Plasma modification of polyethylene powder, after which new functional groups are bound to the treated surface, may enhance specific adhesion by forming hydrogen bonds with-CONH groups of polyamide. Different strategies of adding material to the mold give rise to complicated interlayer which increases joint strength by mechanism of the mechanical adhesion. Mechanical tests show a significant improvement of joint strength, where treated samples reached two-fold values of peel strength (7.657 ± 1.024 N∙mm−1) against the untreated sample (3.662 ± 0.430 N∙mm−1). During bending test, delamination occurred only in samples that were made of the untreated polyethylene. Adding polyamide during the melting stage of polyethylene powder in rotomolding resulted in the formation of entanglements which improve the peel strength almost eight times in comparison with the sample where the polyethylene was left to completely melt and create smooth interlayer surface.


Sign in / Sign up

Export Citation Format

Share Document