A Project-Driven E-Design System for Product Development Process Modeling

2011 ◽  
Vol 101-102 ◽  
pp. 610-613
Author(s):  
Lei Jie Fu ◽  
Ping Yu Jiang

Product development process modeling (PDPM) is one of the key techniques for product development (PD). The main aim of PDPM is to provide a product design chain (PDC) for PD. To increase the efficiency of PDPM, a project-driven e-design system is proposed in this paper. There are two modules in the system: task decomposition and product design chain construction. Additionally, key techniques for enabling the system are discussed. Finally, an example of steering oil pump design project is studied to demonstrate the system.

2014 ◽  
Vol 1061-1062 ◽  
pp. 1233-1237 ◽  
Author(s):  
Pâmela Teixeira Fernandes ◽  
Osíris Canciglieri ◽  
Ângelo Márcio Oliveira Sant’Anna

This paper presents the findings of research exploring how designers could to evaluate and insert sustainability requirements in product design during the initial stages of the product development process. It describes the process of development of the method for sustainability consumable goods based from a literature review and explores its application in the development of packaging for cosmetic. The results show that the use of the method may be a promising solution for sustainable projects, providing the insertion of the reasoning for the inclusion of product development oriented to sustainability as a complement to traditional project requirements that existing in the models of product development.


Author(s):  
Jieun Kwon ◽  
Barry Kudrowitz

Abstract Idea visualization is a critical tool in a product development process. From early idea sketches to 3D prototyping, designers often visualize ideas for themselves and others in the process of feedback and refinement. The viewers of these ideas (clients, investors, collaborators, and consumers) rely on these visual presentations to evaluate the potential of a designer’s idea. Although sketching ideas is common practice in the product design industry, little is known about the extent to which presentation quality influences viewers’ evaluations of ideas. This paper examines the power of product sketch quality on perceived idea evaluation. In the present study, a total of 400 participants were asked to evaluate a set of product ideas presented with and without a sketch. The results show that when product sketches were presented, the participants were heavily influenced by the sketch quality when evaluating the value of the idea, and the concept ratings were somewhat different when sketches were not present. The results imply that viewers’ perceptions of idea worthiness are possibly dependent on how an idea is visually presented.


Author(s):  
Jeffrey W. Herrmann ◽  
Mandar M. Chincholkar

Abstract This paper describes a decision support tool that can help a product development team reduce manufacturing cycle time during product design. This design for production (DFP) tool determines how manufacturing a new product design affects the performance of the manufacturing system by analyzing the capacity requirements and estimating the manufacturing cycle times. Performing these tasks early in the product development process can reduce product development time. The paper presents a comprehensive DFP approach and describes the components of the DFP tool, which gives feedback that can be used to eliminate manufacturing cycle time problems. We present an example that illustrates the tool’s functionality.


Author(s):  
Adam J. Shuttleworth ◽  
Atul Kelkar

Prior to the acceptance of computer aided engineering (CAE) software in the product development process (PDP), product development was characterized by a design-test-redesign-test cycle. This activity was time consuming and resource intensive. As CAE software tools have been integrated into the PDP, the PDP has been characterized by a design-simulate-redesign-test cycle. The addition of CAE tools to the PDP has reduced the time to market and resource consumption. Although the benefits of the integration of CAE software in the PDP process have been realized, there still exists an arbitrary relationship between the results from the CAE tools to engineering decisions regarding product design.


Author(s):  
Kuang-Hua Chang ◽  
Javier Silva ◽  
Ira Bryant

Abstract Conventional product development process employs a design-build-break philosophy. The sequentially executed product development process often results in a prolonged lead-time and an elevated product cost. The proposed concurrent design and manufacturing (CDM) process employs physics-based computational methods together with computer graphics technique for product design. This proposed approach employs Virtual Prototyping (VP) technology to support a cross-functional team analyzing product performance, reliability, and manufacturing cost early in the product development stage; and conducting quantitative trade-off for design decision making. Physical prototypes of the product design are then produced using Rapid Prototyping (RP) technique primarily for design verification purposes. The proposed CDM approach holds potential for shortening the overall product development cycle, improving product quality, and reducing product cost. A software tool environment that supports CDM for mechanical systems is being built at the Concurrent Design and Manufacturing Research Laboratory (http://cdm.ou.edu) at the University of Oklahoma. A snap shot of the environment is illustrated using a two-stroke engine example. This paper presents three unique concepts and methods for product development: (i) bringing product performance, quality, and manufacturing cost together in early design stage for design considerations, (ii) supporting design decision-making through a quantitative approach, and (iii) incorporating rapid prototyping for design verification through physical prototypes.


Author(s):  
Gregory M. Roach ◽  
Jordan J. Cox ◽  
Jared M. Young

A major challenge in industry today is to reduce the cost and cycle time in product development while maintaining enough flexibility to adapt to changing markets. Businesses are requiring more and more flexibility in order to produce custom goods at low cost. A new strategy called the Product Design Generator is presented to provide flexible product platforms through an automated design process where product variation is built into the product development process and is achieved through scalable and in some instances modular parametric models for a given product platform embodiment. A case study of web-based Product Design Generator is presented. The axial turbine disk Product Design Generator demonstrated cycle time reduction from 500 man hours to 15 minutes. This new product development strategy has demonstrated the potential to provide engineers the ability to study more potential design solutions, reduce the number of opportunities to introduce error in the product development process, and allows companies to apply a consistent design process across the organization.


Author(s):  
Marco Rossoni ◽  
Giorgio Colombo ◽  
Luca Bergonzi

Current trends in product development process highlight the increasing adoption of digital data and virtual processes. Nowadays, a huge amount of product data are collected without a clear management strategy and, oftentimes, they dont even cover the whole product development process. A global and integrated planning about information needed to sustain product design process is not a trivial task and, usually, companies underrates this issue. From the perspective of virtualization of processes, and then their automation, the lack of structured knowledge is certainly awful. This paper aims at making a critical analysis how product data evolve throughout the product design or configuration process and how they impact the product development activities. Efficient digital product twin allows companies to virtualize processes and leverage their automation, but it is important to understand how the knowledge management should be carried out. Three case studies, directly experienced by the authors, have been investigated analyzing digital data and virtual tools that allow companies to automate the design process, each one bringing a peculiar perspective of the problem.


Sign in / Sign up

Export Citation Format

Share Document