The Research Based on Empirical Mode Decomposition in Bearing Fault Diagnosis

2011 ◽  
Vol 103 ◽  
pp. 225-228 ◽  
Author(s):  
Tong Le Xu ◽  
Xue Zheng Lang ◽  
Xin Yi Zhang ◽  
Xin Cai Pei

Comparing with many modern signal processing methods in the bearing fault diagnosis, Hilbert-Huang transform is proposed which has good resolving power, and is adapt to process non-stationary, nonlinear and no cross-interference signals. Experimental bearing vibration signals have been analyzed by using this method, whose impulse response waveform was effectively separated from the signals. The results show that the sensitivity and reliability of the method are satisfactory.

2013 ◽  
Vol 694-697 ◽  
pp. 1160-1166
Author(s):  
Ke Heng Zhu ◽  
Xi Geng Song ◽  
Dong Xin Xue

This paper presents a fault diagnosis method of roller bearings based on intrinsic mode function (IMF) kurtosis and support vector machine (SVM). In order to improve the performance of kurtosis under strong levels of background noise, the empirical mode decomposition (EMD) method is used to decompose the bearing vibration signals into a number of IMFs. The IMF kurtosis is then calculated because of its sensitivity of impulses caused by faults. Subsequently, the IMF kurtosis values are treated as fault feature vectors and input into SVM for fault classification. The experimental results show the effectiveness of the proposed approach in roller bearing fault diagnosis.


Author(s):  
Peter W. Tse ◽  
Wei Guo

Rolling bearings are one of the most widely used and most likely to fail components in the vast majority of rotating machines. A remote and wireless bearing condition system allows the bearings to be inspected in remote or hazardous environments and increases the machine reliability. To minimize the transmission loads of enormous vibration data for accurate bearing fault diagnosis, a lossy compression method based on ensemble empirical mode decomposition (EEMD) method was proposed for bearing vibration signals in this paper. The EEMD method inherits the advantage of the popular empirical mode decomposition (EMD) method and can adaptively decompose a multi-component signal into a number of different frequency bands of signal components called intrinsic mode functions (IMFs). After applying the EEMD method to the vibration signal, the impulsive signal component related to the faulty bearing is extracted. The noise and irrelevant signal components that are often embedded in the collected vibration signals were removed. In the bearing signal, the distribution for most of the extremes is around zero. Almost all meaningful extremes related to the defect are concentrated in a small fraction of the samples. Hence, this signal compression provides high compression ratio for the bearing vibration signal. To verify the effectiveness of this method, raw vibration signals were collected from an experimental motor and a real traction motor. The proposed lossy signal compression method was applied to these vibration signals to extract the bearing signals and compress them. A comparison of this compression method with the popular wavelet compression method was also conducted. Wirelessly transmitting these compressed data demonstrates that the proposed signal compression method provides high compression performance for bearing vibration signals. Furthermore, the fault diagnosis using the reconstructed signal indicates that most of the impulses relating to the bearing fault are retained, including their periodicity and amplitudes, which are vital for accurate bearing fault diagnosis. Therefore, the compression of the bearing vibration signal contributes not only on the decreases of the file size and the transmission time, but also on the extraction of faulty bearing features to improve the accuracy in signal analysis. With the help of this method, wireless data communication for the remote and wireless bearing condition monitoring system becomes highly efficient, even in a limited bandwidth environment and maintains accurate bearing fault detection without loss of features and the need of transmitting a large amount of vibration data.


Author(s):  
Shuang Xia ◽  
Guohui Zhou

In the rolling bearing fault detection, the Hilbert–Huang transform (HHT) has made remarkable achievements, but at present, the HHT still has the end effect problem, which will cause a lot of data distortion, spectrum confusion that will affect fault diagnosis result and error in the detection of rolling bearing faults in a serious manner. In response to this problem, this paper proposes a method of multi-point continuation at both ends of the signal to suppress the endpoint effectExtend at both ends of the signal, then perform empirical mode decomposition (EMD). The experimental comparison shows that the method has an effect on the endpoint effect.


Author(s):  
Xueli An ◽  
Luoping Pan

Variational mode decomposition is a new signal decomposition method, which can process non-linear and non-stationary signals. It can overcome the problems of mode mixing and compensate for the shortcomings in empirical mode decomposition. Permutation entropy is a method which can detect the randomness and kinetic mutation behavior of a time series. It can be considered for use in fault diagnosis. The complexity of wind power generation systems means that the randomness and kinetic mutation behavior of their vibration signals are displayed at different scales. Multi-scale permutation entropy analysis is therefore needed for such vibration signals. This research investigated a method based on variational mode decomposition and permutation entropy for the fault diagnosis of a wind turbine roller bearing. Variational mode decomposition was adopted to decompose the bearing vibration signal into its constituent components. The components containing key fault information were selected for the extraction of their permutation entropy. This entropy was used as a bearing fault characteristic value. The nearest neighbor algorithm was employed as a classifier to identify faults in a roller bearing. The experimental data showed that the proposed method can be applied to wind turbine roller bearing fault diagnosis.


2018 ◽  
Vol 8 (9) ◽  
pp. 1621 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Yong Ren ◽  
Gongbo Zhou ◽  
...  

Acceleration sensors are frequently applied to collect vibration signals for bearing fault diagnosis. To fully use these vibration signals of multi-sensors, this paper proposes a new approach to fuse multi-sensor information for bearing fault diagnosis by using ensemble empirical mode decomposition (EEMD), correlation coefficient analysis, and support vector machine (SVM). First, EEMD is applied to decompose the vibration signal into a set of intrinsic mode functions (IMFs), and a correlation coefficient ratio factor (CCRF) is defined to select sensitive IMFs to reconstruct new vibration signals for further feature fusion analysis. Second, an original feature space is constructed from the reconstructed signal. Afterwards, weights are assigned by correlation coefficients among the vibration signals of the considered multi-sensors, and the so-called fused features are extracted by the obtained weights and original feature space. Finally, a trained SVM is employed as the classifier for bearing fault diagnosis. The diagnosis results of the original vibration signals, the first IMF, the proposed reconstruction signal, and the proposed method are 73.33%, 74.17%, 95.83% and 100%, respectively. Therefore, the experiments show that the proposed method has the highest diagnostic accuracy, and it can be regarded as a new way to improve diagnosis results for bearings.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Sign in / Sign up

Export Citation Format

Share Document